SORNet: Spatial Object-Centric Representations for Sequential Manipulation

Wentao Yuan, Chris Paxton, Karthik Desingh, and Dieter Fox

/

o

SORNet «‘/Q
b

RGB observation

FOoPO

Canonical Object Views

Object embeddings

-

left_of (@))
in_front_of(g =)
stacked(&% . @D)
Spatial relations
approach(robot, £) = False
has_obj(robot, Q) = False
top_clear(&) = True
Skill Preconditions

Relative Direction

Fig. 1: We propose SORNet (Spatial Object-Centric Representation Network) that learns object embeddings useful for spatial
reasoning tasks such as predicting spatial relations, classifying skill preconditions, and regressing relative direction between
objects. SORNet embeddings can be used for a variety of tasks, including classifying skill preconditions and regressing object

directions, and can be learned for a wide variety of objects.
I. INTRODUCTION

To complete multi-step robot tasks, robots must be able to
understand qualities of objects and the relationship between
them. Take, for example, deconstructing and rebuilding a
tower: the robot has to be able to tell whether each block is
accessible, determine how to make it so if need be, and then
must understand the consequences of actions as each block
is placed and moved.

In this sort of task, it is common to use a state estimator
followed by a task and motion planner or other model-based
system [1], [2]. A variety of powerful approaches exist for
explicitly estimating object poses, e.g. [3]. However, it is
challenging to generalize these approaches to an arbitrary
collection of objects, and manipulation scenarios often in-
clude contact and occlusion in which model-free methods
tend to fail [4], [5]. Fortunately, knowing exact poses of
objects is not necessary for manipulation.

In this work, we propose a neural network that extracts
object-centric embeddings from raw RGB images condi-
tioned on object queries, which we call SORNet, or Spatial
Object-Centric Representation Network. The design of SOR-
Net allows it to generalize to novel objects without retraining
or finetuning. The object-centric embeddings produced by
SORNet can be combined with readout networks to inform
a task and motion planner with implicit object states relevant
to goal-directed sequential manipulation tasks, e.g. logical
preconditions for primitive skills or continuous 3D directions
from the end effector to objects in the scene.

To summarize, our contribution are: (1) a method for
extracting object-centric embeddings from RGB images that
generalizes zero-shot to different number and type of objects;
(2) a framework for learning object embeddings that capture
continuous spatial relations with only logical supervision; (3)

a dataset containing sequences of RGB observations labeled
with spatial predicates during various tabletop rearrangement
manipulation tasks.

Our approach allows for zero-shot generalization to new
objects and goals. We evaluate the object-centric embeddings
produced by SORNet on (1) classification of predicate
preconditions; and (2) prediction of relative 3D direction
between entities. Models were tested on held-out objects and
colors that did not appear in training data. In both tasks,
SORNet obtains significant improvements over the baseline
methods. In this short paper we present the extensions of the
SORNet on objects beyond blocks along with comparisons
to additional baselines; for more results see the full paper [6].

II. METHODS

Our object embedding network (SORNet) (Fig. 2) takes
an RGB image and an arbitrary number of canonical object
views and outputs an embedding vector corresponding to
each input object patch. The architecture of the network
is based on the Visual Transformer (ViT) [7]. The input
image is broken into a list of fixed-sized patches, which we
call context patches. The context patches are concatenated
with the canonical object views to form a patch sequence.
Each patch is first flattened and then linearly projected into
a token vector, then positional embedding is added to the
sequence of tokens. Following [7], we use a set of learnable
vectors with the same dimension as the token vectors as
positional embeddings. The positional-embedded tokens are
then passed through a transformer encoder, which includes
multiple layers of multi-head self-attention. The transformer
encoder outputs a sequence of embedding vectors. We dis-
card the embedding for context patches and keep those for
the canonical object views.

EET

Observation

Positional —
Encoding

e

300 8,0 0o

Transformer Encoder J

[Linear Projection of Flattened Patches

| I I O B
— maeESNEENR BOED

Context Patches

Canonical Object Views

Fig. 2: SORNet architecture. Input to the network is an RGB image and canonical views of the objects of interest. The RGB image
is broken into context patches which have the same size as the canonical views. These patches are flattened and added with positional
encoding and passed through a multi-layer multi-head transformer [7]. The embeddings corresponding to the canonical views are used
for the downstream tasks. The top left inset shows examples of canonical object views used during training.

We apply the same positional embedding to the canonical
object views to make the output embeddings permutation
equivariant. We also mask out the attention among canonical
object views and the attention from context patches to
canonical object views to ensure the model uses information
from the context patches to make predictions. In this way,
we can pass in an arbitrary number of canonical object views
in arbitrary order without changing model parameters during
inference.

Intuitively, the canonical object views can be viewed as
queries where the context patches serve as keys to extract the
spatial relations’ values. Note that the canonical object views
are not crops from the input image, but arbitrary views of
the objects that may not match the objects’ appearance in the
scene. Our model learns to identify objects even under drastic
change in lighting, pose and occlusion. Fig. 2 shows some
examples of canonical object views used in our experiments.

In the experiments, we also test on multiple-views. In
these experiments, context patches from different views are
concatenated to form a single patch sequence.

A. Readout Networks

The readout networks (Fig. 3) are responsible for predict-
ing a list of relations using object embeddings. The relations
can be logical statements, e.g., whether the blue block is
stacked onto the green block, or continuous quantities, e.g.
which direction should the end effector move to reach the
red block. The readout networks consist of a collection of 2-
layer MLPs, one for each type of relations. Here we focus on
unary and binary relations. Unary relations involve a single
object or an object and the environment, which could be
the robot or a region on the table. Binary relations involve
two objects and, optionally, the environment. In principle,
our framework is extensible to relations involving more than
two objects, but we leave that for future work.

The readout network for unary relations takes the list
of object embeddings and outputs relations pertaining to
the object that the embedding is conditioned on. Taking
the top-is_clear classifier for an example, if the input
embedding is conditioned on the blue block, the network will
output whether there is any object on top of the blue block.
If the input embedding is conditioned on the red block, the
network will output whether there is any object on top of
the red block.

The readout network for binary relations takes a list of
binary object embeddings created by concatenating pairs of
object embeddings and outputs relations corresponding to a
pair of objects, e.g., whether the blue block is on top of the
red block. Thus, with N object embeddings, there will be
N(N — 1) binary object embeddings and N (NN — 1) output
relations.

Parameters of the readout network are independent of
the number of objects. The number of output relations
dynamically changes with the number of input object em-
beddings. For example, when are 7 unary relations and
2 binary relations, with 4 objects, the network generates
7TX442x4x(4—1) =52 outputs; with 5 objects, the
network generates 7 x 542 x 5 x (5 — 1) = 75 outputs. In
this way, our overall model generalizes zero-shot to scenes
with an arbitrary number of objects.

III. DATA GENERATION

We created a simulated tabletop environment where a
Franka Panda robot manipulates a set of randomly colored
ShapeNet objects [8], specifically from the ACRONYM
subset [9]. We also tested on the “Leonardo” blocks dataset
described in our full paper [6]. We sampled high-level actions
and used a simple task and motion planner [2] to generate
trajectories. As we know the ground truth poses of the
objects in the simulator, we computed ground-truth logical

Readout networks for each

Object predicate classification

Embeddings

top_is_clear(x)

stacked(x, y)

/V—} as_obi(robot,) = True

Unary Predicates
has_obj(robot,.) = False

Binary Predicates

stacked(. .) = False
stacked(., n) =True

stacked(

has_obj(robot,.) = False

has_obj(robot,n) = False

, —)=False

Fig. 3: Architecture of the readout networks, which uses the object embeddings from SORNet to predict spatial relations,
such as logical statements that can serve as skill preconditions or continuous 3D directions. The readout network is flexible
to accommodate any number of input object embeddings without changing its parameters.

Predicate Accuracy
100 973 97
890 886

949
%05 %04 .05 %05 205 2L

ResNet50
VIT-B/16
CLIP

MVP

R3M
SORNet
SORNet 2 view

blocks

kitchen
Predicate F1

g4 829

blocks

kitchen

Fig. 4: Predicate classification results on blocks and kitchen
data. SORNet clearly outperforms other pre-training meth-
ods on reasoning about spatial relations in scenarios with
complex object interactions.

predicates at every step of the planning process. We used
NViSII [10] to render the RGB and depth images used in
training. Domain randomization including random lighting,
background and perturbations to the camera position was
applied while rendering.

During training, we used the XKCD colors!, but held out
every color containing the words (red, green, blue, yellow).
We also held out the mug and bowl classes to only appear in
test data. For 2-view experiments, we fixed virtual cameras
at 2 different locations as shown in Fig 6.

IV. RESULTS

Predicate classification. We benchmark our model against
3 state-of-the-art pretraining methods, CLIP [11] MVP [12]

nttps://xked.com/color/rgb/

wo] 977 974 977 978
829 822 g,y
80 .
60 -
01 B 4 objects
I 5 objects
X B 6 objects
Bl 7 objects
0= T
Accuracy F-1

Fig. 5: SORNet generalizes to scenes with different number
of objects with almost no performance drop.

and R3M [13] on the task of predicting spatial relations
among objects in the form of logical predicates. The models
are trained/finetuned on our large-scale manipulation dataset
to predict 6 types of relations (on surface, has obj, in
approach region, top is clear, stacked and aligned with) and
tested on images where the objects are completely unseen
during training. For our model, we only need to provide a
single canonical patch per test object without any predicate
labels. For the baselines, we provide 100 sequences with
ground truth predicates for the test objects because these
models do not work zero-shot on unseen objects.

We report the average accuracy and F-1 score on both
the blocks and the kitchen data in Fig. 4. For reference, we
also show results for ResNet50 (backbone used by R3M) and
ViT-B/16 (backbone used by CLIP and MVP) trained from
scratch. We can see that even after fine-tuning on scenes with
test objects, the baselines significantly underperform zero-
shot SORNet. This demonstrates the generalizability of our
model obtained via conditioning on canonical object views.

Further, we tested our model, which was only trained on
4-object scenes, to scenes with 5 to 7 objects. We can see
from Fig. 5 that SORNet generalizes to scenes with different
number of objects with almost no performance drop.

Open-loop planning. Please refer to our supplementary
video for the demo, where we incorporate SORNet as a
part of an open-loop planning pipeline in a real-world
manipulation scenario.

https://xkcd.com/color/rgb/

on_surface(00_pastel_purple_Mug, tabletop)
on_surface(01_pinkish_tan_Mug, tabletop)
on_surface(02_bottle_green_Bowl, tabletop)
on_surface(03_barbie_pink_Mug, tabletop)
on_surface(04_brownish_green_Bowl, tabletop)
left_of(01_pinkish_tan_Mug, 02_bottle_green_Bowl)
left_of(00_pastel_purple_Mug, 03 _barbie_pink_Mug)
left_of(04_brownish_green_Bowl, 03_barbie_pink_Mug)
right_of(03_barbie_pink_Mug, 04_brownish_green_Bowl)
right_of(03_barbie_pink_Mug, 00_pastel_purple_Mug)

on_surface(00_baby_blue_Mug, tabletop)
on_surface(01_bubblegum_pink_Mug, tabletop)
on_surface(02_lightish_green_Bowl, tabletop)
on_surface(03_deep_red_Mug, tabletop)
on_surface(04_dark _forest_green_Bowl, tabletop)
left_of(02_lightish_green_Bowl, 04_dark forest_green_Bowl)
left_of(02_lightish_green_Bowl, 00_baby_blue_Mug)
right_of(00_baby_blue_Mug, 02 _lightish_green_Bowl)
right_of(04_dark forest_green_Bowl, 02_lightish_green_Bowl)
in_front_of(02_lightish_green_Bowl, 03_deep_red_Mug)
in_front_of(04_dark _forest_green_Bowl, 01_bubblegum_pink_Mug)
behind(01_bubblegum_pink_Mug, 04_dark forest_green_Bowl)
behind(03_deep_red_Mug, 02_lightish_green_Bowl)
touching(00_baby_blue_Mug, 01_bubblegum_pink_Mug)
touching(01_bubblegum_pink_Mug, 04_dark_forest_green_Bowl)
touching(04_dark forest_green_Bowl, 00_baby_blue_Mug)
touching(00_baby_blue_Mug, 04_dark _forest_green_Bow)
touching(04_dark forest_green_Bowl, 01_bubblegum_pink_Mug)
touching(01_bubblegum_pink_Mug, 00_baby_blue_Mug)

right_of(02_bottle_green_Bowl, 01_pinkish_tan_Mug)
in_front_of(02_bottle_green_Bowl, 03_barbie_pink_Mug)
in_front_of(01_pinkish_tan_Mug, 04_brownish_green_Bowl)
in_front_of(01_pinkish_tan_Mug, 00_pastel_purple_Mug)
behind(00_pastel_purple_Mug, 01_pinkish_tan_Mug)
behind(04_brownish_green_Bowl, 01_pinkish_tan_Mug)
behind(03_barbie_pink_Mug, 02_bottle_green_Bowl)
touching(02_bottle_green_Bowl, 04_brownish_green_Bowl)
touching(04_brownish_green_Bowl, 00_pastel_purple_Mug)
touching(00_pastel_purple_Mug, 04_brownish_green_Bowl)
touching(04_brownish_green_Bowl, 02_bottle_green_Bowl)

Fig. 6: Qualitative predicate classification results on the
kitchen data. Black means true positive, blue means false
positive and red means false negative. True negatives are not
shown due to limited space. Reference directions (front and
left) are shown in the left scenario.

Direction prediction. Finally, we performed an experi-
ment to show that SORNet embeddings capture continuous
spatial information. Specifically, we trained a regressor on
top of frozen SORNet embeddings to predict the continuous
direction between two objects (Obj-Obj) or the direction the
end effector should move to reach a certain object (EE-
Obj), using an L2 loss. The results are shown in Fig 7. This
demonstrate SORNet’s representation transfers much better
than baseline methods to predict precise spatial quantities,
which is crucial in robot manipulation tasks.

V. CONCLUSION

We proposed SORNet (Spatial Object-Centric
Representation Network) that learns object-centric
representations from RGB images. We show that the
object embeddings produced by SORNet capture spatial
relations which can be used in a downstream tasks such as
spatial relation classification, skill precondition classification
and relative direction regression. Our method works on
scenes with an arbitrary number of unseen objects in a

Regression Error
26.5

ResNet50
VIT-B/16
cLp

Distance

EE-Object Object-Object

Fig. 7: Euclidean error on regression of continuous 3D unit
vector between entities in the scene.

zero-shot fashion. With real-world robot experiments, we
demonstrate how SORNet can be used in manipulation of
novel objects.

REFERENCES

[1] M. Fox and D. Long, “PddI2. 1: An extension to pddl for expressing
temporal planning domains,” Journal of artificial intelligence research,
vol. 20, pp. 61-124, 2003.

[2] C. Paxton, N. Ratliff, C. Eppner, and D. Fox, “Representing robot
task plans as robust logical-dynamical systems,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019, pp. 5588-5595.

[3] X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox,
“Poserbpf: A rao-blackwellized particle filter for 6-d object pose
tracking,” IEEE Transactions on Robotics, 2021.

[4] C. Xie, Y. Xiang, A. Mousavian, and D. Fox, “The best of both
modes: Separately leveraging rgb and depth for unseen object instance
segmentation,” in Conference on robot learning. PMLR, 2020, pp.
1369-1378.

[51 Y. Xiang, C. Xie, A. Mousavian, and D. Fox, “Learning rgb-d feature
embeddings for unseen object instance segmentation,” arXiv preprint
arXiv:2007.15157, 2020.

[6] W. Yuan, C. Paxton, K. Desingh, and D. Fox, “Sornet: Spatial object-
centric representations for sequential manipulation,” in Conference on
Robot Learning. PMLR, 2022, pp. 148-157.

[71 A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[8] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al,
“Shapenet: An information-rich 3d model repository,” arXiv preprint
arXiv:1512.03012, 2015.

[9] C. Eppner, A. Mousavian, and D. Fox, “Acronym: A large-scale grasp
dataset based on simulation,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2021, pp. 6222-6227.

[10] N. Morrical, J. Tremblay, S. Birchfield, and 1. Wald, “ViSII: Virtual
scene imaging interface,” 2020, https://github.com/owl-project/ViSIL/.

[11] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” arXiv preprint
arXiv:2103.00020, 2021.

[12] T. Xiao, I. Radosavovic, T. Darrell, and J. Malik, “Masked visual pre-
training for motor control,” arXiv preprint arXiv:2203.06173, 2022.

[13] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta, “R3m: A
universal visual representation for robot manipulation,” arXiv preprint
arXiv:2203.12601, 2022.

 https://github.com/owl-project/ViSII/

	Introduction
	Methods
	Readout Networks

	Data Generation
	Results
	Conclusion
	References

