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Fig. 1: We propose SORNet (Spatial Object-Centric Representation Network) that learns object embeddings useful for spatial
reasoning tasks such as predicting spatial relationships, classifying skill preconditions, and regressing relative direction between
objects.

Abstract—Sequential manipulation tasks require a robot to
perceive the state of an environment and plan a sequence of
actions leading to a desired goal state, where the ability to
reason about spatial relationships among object entities from
raw sensor inputs is crucial. Prior works relying on explicit
state estimation or end-to-end learning struggle with novel
objects. In this work, we propose SORNet (Spatial Object-
Centric Representation Network), which extracts object-centric
representations from RGB images conditioned on canonical views
of the objects of interest. We show that the object embeddings
learned by SORNet generalize zero-shot to unseen object entities
on three spatial reasoning tasks: spatial relationship classification,
skill precondition classification and relative direction regression,
significantly outperforming baselines. Further, we present real-
world robotic experiments demonstrating the usage of the learned
object embeddings in task planning for sequential manipulation.

I. INTRODUCTION

A crucial question for complex multi-step robotic tasks is
how to represent relationships between entities in the world,
particularly as they pertain to preconditions for various skills
the robot might employ. In goal-directed sequential manipu-
lation tasks with long-horizon planning, it is common to use
a state estimator followed by a task and motion planner or
other model-based system [7, 8, 1, 20, 18, 22]. A variety of
powerful approaches exist for explicitly estimating the state
of objects in the world, e.g. [25, 23, 15, 2]. However, it is
challenging to generalize these approaches to an arbitrary col-
lection of objects. In addition, the objects are often in contact

in manipulation scenarios, where works explicitly addressing
the problem of generalizing to unseen objects [27, 26] still
struggle.

Fortunately, knowing exact poses of objects may not be
necessary for manipulation. End-to-end methods [16, 14, 5]
leverage that fact and build networks that generates actions
directly without explicitly representing objects. Nevertheless,
these networks are very specific to the tasks they are trained
on. For example, it is non-trivial to use a network trained on
stacking blocks to unstack blocks.

In this work, we take an important step towards a manip-
ulation framework that generalizes zero-shot to unseen tasks
with unseen objects. Specifically, we propose a neural network
that extracts implicit object embeddings directly from raw
RGB images, which we call SORNet, or Spatial Object-
Centric Representation Network. Trained from large amounts
of simulated robotic manipulation data, the object-centric em-
beddings produced by SORNet can be used to predict spatial
relationships between the entities in the scene to inform a task
and motion planner with relevant implicit state information
toward goal-directed sequential manipulation tasks.

We emprically evaluate the object-centric embeddings pro-
duced by SORNet on three different downstream tasks: 1)
predicate classification task on our Leonardo dataset to pro-
duce symbols catered toward sequential manipulation tasks, 2)
visual question and answering task with spatial reasoning on



Fig. 2: SORNet architecture. Input to the network is an RGB image and canonical views of the objects of interest. The RGB
image is broken into context patches which have the same size as the canonical views. These patches are flattened and added
with positional encoding and passed through a multi-layer multi-head transformer [4]. The embeddings corresponding to the
canonical views are used for the downstream tasks.

CLEVR-CoGenT dataset, 3) regressing the relative direction
between in the 3D space using only RGB observations. In
each of these tasks, the training objects are different from the
testing objects, thus substantiating the transferable feature of
our SORNet. In all of these tasks, SORNet obtains significant
improvements over the baseline methods.

To summarize, our contribution are: (1) the SORNet ar-
chitecture that produces object-centric embeddings from RGB
images that capture spatial relationships among entities in
the scene; (2) the large Leonardo dataset with sequences
of RGB observations and relevant spatial predicate labels
during various tabletop rearrangement manipulation tasks; (3)
experimental analysis on three different downstream tasks in a
zero-shot fashion: predicate classification, visual question and
answering, relative object poses in 3D space; and (4) a real-
world robot experiment to showcase the utility of the learned
object-centric embeddings on real-world observations.

II. RELATED WORK

Learning Spatial Relationships Learning spatial relation-
ships between object entities have been studied in the field
of 3D vision and robotics. Methods such as [19, 6, 21]
predict discrete or continuous pairwise object relations from
3D inputs such as point clouds or voxels, assuming complete
observation of the scene and segmented objects with identities.
In contrast, our approach does not make any assumptions
regarding the observability of the objects and does not require
pre-processing of the sensor data. The learning framework
by Kase et al. [13] is most related to our approach, which

takes a sequence of sensor observations across time to produce
a high-level action operator and a low-level control policy
toward task execution. Their high-level module classifies a set
of pre-defined relational predicates which then is used by a
symbolic planner to produce a suitable operator. Compared to
our approach, theirs is limited by the number of objects in the
scene and a fixed set of spatial predicates.

Visual Reasoning Recently, several advancements have
been made on visual reasoning benchmarks [11, 29, 10] using
transformer networks [24]. Toward solving spatio-temporal
reasoning task from CLEVRER [29] and CATER [10], Ding
et al. [3] proposed an object-based attention mechanism and
Zhou et al. [30] proposed a multi-hop transformer model.
Both works assume a segmentation model to produce object
segments and performs language grounding to the segments to
perform reasoning. Our SORNet architecture is simpler and
can solve spatial-reasoning tasks for unseen object instances
without requiring a segmentation or object detection module.
Furthermore, our work focuses on a relatively complex manip-
ulation task domain involving manipulator in the observations.
Although our current work focuses on predicting spatial rela-
tions from a single RGB frame, the object-centric embeddings
could potentially be used for solving temporal-reasoning tasks.

III. METHODS

A. SORNet: Spatial Object-Centric Representation Network

Our object embedding network (SORNet) (Fig. 2) takes
an RGB image and an arbitrary number of canonical object
views and outputs an embedding vector corresponding to



Fig. 3: The embeddings from the SORNet is used to predict logical statements on spatial relations, which can serve as
preconditions for primitive skills in manipulation tasks. This part of the framework is flexible to accommodate any number of
objects in the scene. MU and MB denote the number of unary and binary predicate types respectively.

each input object patch. The architecture of the network is
based on the Visual Transformer (ViT) [4]. The input image
is broken into a list of fixed-sized patches, which we call
context patches. The context patches are concatenated with
the canonical object views to form a patch sequence. Each
patch is first flattened and then linearly projected into a token
vector, then positional embedding is added to the sequence
of tokens. Following [4], we use a set of learnable vectors
with the same dimension as the token vectors as positional
embeddings. The positional-embedded tokens are then passed
through a transformer encoder, which includes multiple layers
of multi-head self-attention. The transformer encoder outputs
a sequence of embedding vectors. We discard the embedding
for context patches and keep those for the canonical object
views.

We apply the same positional embedding to the canonical
object views to make the output embeddings permutation
equivariant. We also mask out the attention among canonical
object views and the attention from context patches to canoni-
cal object views to ensure the model uses information from the
context patches to make predictions. In this way, we can pass
in an arbitrary number of canonical object views in arbitrary
order without changing model parameters during inference.

Intuitively, the canonical object views can be viewed as
queries where the context patches serve as keys to extract
the spatial relationships’ values. Note that our model does
more than simple object detection. For example, to determine

whether the robot is grabbing the red block, the model needs
to attend to the patch containing the red block and the patch
containing the robot hand. Moreover, the canonical object
views are not crops from the input image. They are arbitrary
views of the objects that do not need to match the object’s
exact appearance in the context image.

B. Predicate Classifier

The predicate classifier (Fig. 3) is responsible for predicting
a list of predicates using object embeddings. The predicates
are logical statements about object-environment or object-
object spatial relationships, e.g., whether the blue block is
on the left part of the table. The predicate classifier con-
sists of a collection of 2-layer MLPs, one for each type of
relationship. Here we focus on unary and binary predicates.
Unary predicates involve a single object or an object and the
environment, which could be the robot or a region on the
table. Binary predicates involve two objects and, optionally,
the environment. In principle, our framework is extensible to
predicates involving more than two objects, but we leave that
for future work.

The MLP for unary predicates takes the list of object
embeddings produced by SORNet and outputs predicates
pertaining to the object that the embedding is conditioned on.
Taking the top_is_clear classifier for an example, if the
input embedding is conditioned on the blue block, the MLP
will output whether there is any object on top of the blue



Fig. 4: Sample scenes from training and testing scenarios in Leonardo dataset. Top row shows the initial configuration of
a task scenario and the bottom row shows the goal condition. The training scenarios contains 4 blocks with random colors
with a single tower stack as a goal condition. The testing scenarios contain 4-7 blocks with specific colors with various goal
conditions involving multi-tower stacking scenarios.

block. If the input embedding is conditioned on the red block,
the MLP will output whether there is any object on top of the
red block.

The MLP for binary predicates takes a list of binary
object embeddings created by concatenating pairs of object
embeddings produced by SORNet and outputs predicates
corresponding to a pair of objects, e.g., whether the blue block
is on top of the red block. Thus, with N object embeddings,
there will be N(N − 1) binary object embeddings.

Parameters of the predicate classifier are independent of
the number of objects. The number of output predicates
dynamically changes with the number of input object embed-
dings. For example, in our setup, there are 7 unary MLPs
and 2 binary MLPs. With 4 objects, the model predicts
7 × 4 + 2 × 4 × (4 − 1) = 52 predicates. With 5 objects,
the model predicts 7× 5+2× 5× (5− 1) = 75 predicates. In
this way, our model generalizes zero-shot to scenes with an
arbitrary number of objects.

IV. DATASET GENERATION AND EXPERIMENTAL SETUP

We created a simulated tabletop manipulation environment
containing a Franka Panda robot and a set of randomly colored
blocks. The camera viewpoint is chosen so that the robot arm
as well as the majority of the table surface is visible. The table-
top is divided into regions: left, right, far, center. The robot is
given a goal, and then we use a simple task planner [18] to
find a sequence of actions to achieve that goal. During training,
we always start with blocks on the tabletop and construct a
single tower. Test goals include unstacking or constructing
multiple towers. As we know the ground truth poses of the
blocks in the simulator, we can compute ground-truth logical
predicates at every step of the planning process. The robot uses
a sample-based motion planner to generate trajectories and

choose grasps, similar to in previous work [9]. For rendering,
we used NVISII [17]. Domain randomization with random
perturbations to the camera viewpoint is used while rendering
the RGB observations. For multi-view experiments, we fixed
virtual cameras at 3 different locations.

Our training data contains a total of 133796 sequences of a
single task - stacking 4 blocks in a tower. The block colors are
randomly chosen from 405 xkcd colors1, with no repetition of
a color in the scene. Our testing data contains 9526 sequences,
representing a wider range of tasks with 4-7 blocks at a time,
chosen from colors that are not a part of the training data: red,
green, blue, yellow, aqua, pink, purple. The tasks are varied
as well. We randomly choose between several different goal
conditions: a) stacking one tower using 2 or 3 specific blocks
in a specific order from 4-7 objects on the table, b) moving
specific blocks away from a set of regions (far, left, right,
center) on the table, c) a combination of scenarios a and b,
d) stacking multiple towers using specific blocks in a specific
order from the objects on the table, e) placing a specific object
on the table at a particular region of the table, f) a combination
of scenarios d and e.

V. RESULTS

A. CLEVR-CoGenT

We first evaluate our approach on a variant of the CLEVR
dataset [11], a well established benchmark for visual reason-
ing. CLEVR contains rendered RGB images with at most 10
objects per image. There are 96 different objects in total (2
sizes, 8 colors, 2 materials, 3 shapes). Each image is labeled
with 4 types of spatial relationships (right, front, left, behind)
for each pair of objects.

1https://xkcd.com/color/rgb/

https://xkcd.com/color/rgb/


MDETR [12] SORNet (ours) MDETR-oracle [12]

ValA Accuracy 84.950 90.909 97.944
ValB Accuracy 59.627 89.403 98.052

TABLE I: Zero-shot relationship classification accuracy on
CLEVR-CoGenT [11]. The MDETR-oracle model has seen
all the objects during training, where as MDETR and ours
have only see objects in condition A.

Specifically, we use the CoGenT version of the dataset,
which stands for Compositional Generalization Test, where
the data is generated in two different conditions. In condition
A, cubes are gray, blue, brown, or yellow and cylinders are
red, green, purple, or cyan. Condition B is the opposite: cubes
are red, green, purple, or cyan and cylinders are gray, blue,
brown, or yellow. Spheres can be any color in both conditions.
The models are trained on condition A and evaluated on
condition B. The training set (trainA) contains 70K images
and the evaluation set (valB) contains 15K images. Several
prior works [28, 12] show significant generalization gap on
CLEVR-CoGenT caused by the visual model learning strong
spurious biases between shape and color.

We generate a question for each spatial relationship in the
image, e.g. “Is the large red rubber cube in front of the small
blue metal sphere?” We filter out any query that is ambiguous,
e.g. if there were two large red cubes, one in front and one
behind the small blue sphere. This results in around 2 million
questions for both valA and valB sets. We compare against
MDETR [12], which reports state-of-the-art zero-shot result on
CLEVR-CoGenT, i.e. there is no fine-tuning on any example
from condition B. The results are summarized in Table I.
Our model performs drastically better on classifying spatial
relationships of unseen objects and shows a much smaller
generalization gap between valA and valB sets.

Unlike MDETR which takes text queries, our model takes
visual queries in the form of canonical object views, and
the set of questions we generate are different from the ones
provided with CLEVR-CoGenT. To eliminate the influence of
those factors, we report the performance of the MDETR model
trained on the full CLEVR dataset, denoted as MDETR-oracle.
We can see that an MDETR-oracle is able to achieve almost
perfect accuracy, which means the bottleneck is in the gen-
eralizability of the visual model. The zero-shot generalization
ability of our model can potentially be combined with other
reasoning pipelines to improve generalization performance on
other types of queries as well.

B. Predicate Classification

Next, we evaluate the task of predicate classification on
the Leonardo dataset. We compare against 3 baselines that
do not use object conditioning. The first two baselines use a
ResNet18 and a ViT-B/32 respectively to directly predict 52
predicates. The last baseline uses the same architecture as ours,
but the embedding tokens come from 4 fixed class embedding
vectors instead of being conditioned on the canonical object

views. We report 3 metrics: accuracy, F-1 score and all-match
accuracy for all predicates as well as predicates within a
certain category. The accuracy and F-1 score are computed per
predicate and averaged. For all-match accuracy, we consider
the output predicates as vectors. If a single predicate is wrong,
we consider the prediction for the entire category to be wrong.
The all-match accuracy most accurately reflect real world
performance of the predicate classifier, since the planner uses
a vector of predicates instead of a single predicate.

As mentioned in Sec. IV, the models are tested on images
where the objects are completely unseen during training. No
fine-tuning on the test data is performed. All models except the
single-view SORNet model are trained on 3 different views
of the scene, which serves as a sort of data augmentation.
During testing, we aggregate the predictions from 3 views
by adding the logits to minimize the effect of occlusion. We
denote this multi-view prediction by M-View in Table II. We
also concatenate the gripper state to the object embedding
in a variant of SORNet, denoted by (G) in Table II. The
opening/closing of the gripper is hard to see visually but
provides useful information for predicate classification.

The results are summarized in Table II. We can see that the
non-object-conditioned baselines fail drastically when applied
to unseen objects, performing only slightly better than a
classifier which predicts the majority class. This demonstrates
the adaptivity of our model obtained via conditioning on
canonical object views.

Further, we tested our model on scenes with 5 to 7 ob-
jects, while it has only been trained on 4-object scenes. The
performance of our model drops for some types of predicates
(e.g. stacked) but remains the same for most predicates. Note
that the number of binary predicates increases quadratically
with the number of objects in the scene, which also increases
complexity of the scene. None of the baselines can even be
applied to these scenes with more objects without introducing
additional model parameters and retraining the model.

Finally, we run our best performing model on 30 real-world
images of a robot performing various manipulation tasks.
Table III summarizes quantitative results and Fig. 5 shows
two qualitative examples of the predicates predicted by our
model. Our model transfers to real-world without losing much
accuracy. It does make some mistakes when encountered with
novel scenarios never seen during training, such as one block
stacked in between two blocks (right plot in Fig 5).

C. Skill Executability

We further evaluate the predicate prediction in the context
of task planning. Each frame in the Leonardo dataset is labeled
with a primitive skill that will be executed, e.g. grasp the red
block. Each skill has a list of preconditions that needs to be
satisfied before it can be executed, which can be formulated
as a vector of predicate values. In other words, if all of the
predicates in the preconditions are classified correctly, we can
determine the executability of that skill correctly. In Table IV,
we report the accuracy for classifying the executability of skills
in the Leonardo test set using the predicate predictions.



Accuracy

Method # pred all on surface has obj top clear stacked aligned approach

Majority 52 88.2 79.3 88.4 75.1 91.7 99.2 92.9

ResNet18 M-View 52 88.5 80.0 88.4 76.2 91.7 99.2 92.9
ViT-B/32 M-View 52 88.5 80.2 88.4 76.2 91.7 99.2 92.9

ViT-B/32 M-Head M-View 52 88.5 80.2 88.4 76.0 91.7 99.2 92.9

SORNet 52 98.0 97.6 95.4 96.9 98.8 99.3 96.6
SORNet M-View 52 98.6 98.8 95.8 98.4 99.3 99.3 96.9

SORNet M-View (G) 52 98.9 98.9 98.8 98.5 99.5 99.3 96.6

SORNet M-View (G) 5 obj 70 98.5 98.5 99.4 95.8 98.2 99.6 97.4
SORNet M-View (G) 6 obj 102 98.0 98.3 99.6 93.9 96.8 99.7 97.7
SORNet M-View (G) 7 obj 133 97.6 97.9 99.3 91.1 96.0 99.8 97.8

All-match Accuracy

Method # pred all on surface has obj top clear stacked aligned approach

ResNet18 M-View 52 0.0 0.3 53.5 30.4 30.1 89.8 71.6
ViT-B/32 M-View 52 0.0 0.4 53.5 30.3 30.1 89.8 71.6

ViT-B/32 M-Head M-View 52 0.0 0.3 53.5 30.3 30.1 89.8 71.6

SORNet 52 46.7 71.7 81.8 88.6 87.8 91.2 87.7
SORNet M-View 52 54.8 83.7 83.3 93.7 92.1 92.1 87.9

SORNet M-View (G) 52 63.6 84.5 95.8 94.0 94.3 92.0 86.6

SORNet M-View (G) 5 obj 70 45.5 74.8 97.6 81.1 72.6 92.0 87.5
SORNet M-View (G) 6 obj 102 29.7 68.9 97.7 70.2 52.4 92.0 87.5
SORNet M-View (G) 7 obj 133 17.0 58.2 95.7 55.4 36.1 91.8 86.6

F-1 Score

Method # pred all on surface has obj top clear stacked aligned approach

ResNet18 M-View 52 9.7 23.6 0.0 31.5 0.0 0.0 0.0
ViT-B/32 M-View 52 11.9 37.4 0.0 28.9 0.0 0.0 0.1

ViT-B/32 M-Head M-View 52 12.2 32.5 0.0 27.7 0.0 0.0 0.0

SORNet 52 85.9 93.9 80.4 93.5 92.0 68.4 77.7
SORNet M-View 52 88.8 97.0 81.8 96.7 95.2 71.5 79.3

SORNet M-View (G) 52 89.5 97.1 94.7 96.8 96.4 69.9 76.7

SORNet M-View (G) 5 obj 70 85.3 96.0 96.7 91.3 83.6 69.8 78.1
SORNet M-View (G) 6 obj 102 79.9 95.5 97.0 87.5 69.2 70.0 77.9
SORNet M-View (G) 7 obj 133 73.2 94.3 94.5 82.0 58.0 65.4 75.5

TABLE II: Zero-shot predicate classification results on the Leonardo test data where the objects are held-out from training.
SORNet significantly outperforms baselines that are not object-conditioned, and is able to generalize to scenes with a different
number of objects without retraining or finetuning.

Method all on surface has obj top clear stacked aligned approach

Accuracy 96.3 96.4 96.7 93.3 97.1 96.7 95.6
All-match Accuracy 26.7 63.3 93.3 80.0 76.7 90.0 80.0

F1 Score 76.5 90.7 85.7 80.3 69.1 33.3 68.9

TABLE III: Real-world predicate classification results.

Accuracy

Method all approach grasp align place lift go home

ResNet18 M-View 27.0 88.7 0.0 0.0 0.0 0.0 100.0
ViT-B/32 M-View 27.4 90.6 0.0 0.0 0.0 0.0 100.0

ViT-B/32 M-Head M-View 27.3 90.4 0.0 0.0 0.0 0.0 100.0

SORNet 63.7 64.3 72.4 67.4 99.4 53.0 97.6
SORNet M-View 63.6 65.1 69.1 99.8 52.9 69.7 99.5

SORNet M-View (G) 76.3 98.7 68.1 99.9 99.9 69.7 100.0

TABLE IV: Skill executability accuracy on the Leonardo test data. SORNet is the only model that is able to correctly determine
the executability of skills relevant to the handling of objects.



Fig. 5: Visualization of predicted predicates in real-world manipulation scenarios. Black means true positive, blue means false
positive and red means false negative. True negatives are not shown due to limited space.

This evaluation puts more emphasis on the predicates
relevant to the manipulation of objects, e.g. approach,
aligned, which are rarely true in the training data. Our
model is able to identify these predicates correctly whereas
the baselines fail completely on skills relevant to object
manipulation, i.e. grasp, align, place and lift.

D. Open Loop Planning
In this experiment, we incorporate SORNet as a part of

an open-loop planning pipeline. Specifically, given an initial
frame, we use the predicates predicted by SORNet M-View
(G) to populate a state vector. A task and motion planner
takes the state vector and desired goal (formulated as a list
of predicate values to be satisfied), and outputs a sequence of
primitive skills. The robot then executes this sequence of skills
in an open loop fashion. This demonstrate that how SORNet
can be applied to sequential manipulation of unseen object in
a zero-shot fashion, i.e. without any fine-tuning on the test
objects. Please take a look at our online video for the demo.

E. Relative Direction Prediction
In this experiment, we train a regression head on top of

the frozen pretrained object embedding to predict the relative
direction between objects. The regression head has the same
architecture as the predicate classifier, but outputs a continuous
3D unit vector that indicates in which direction the robot
should move to put object A in object B’s location. The head
is trained using L2 loss instead of binary cross entropy.

We compare against 2 supervised baselines using ResNet18
and ViT-B/32 backbones respectively. We can see that both
baselines overfit to the training set where as the regressor based
on our object embedding is able to generalize well. All models
are trained on 1000 and tested on 3000 sequences.

ResNet18 ViT-B/32 SORNet+MLP

Train L2 Distance 0.2848 0.2808 0.3122
Test L2 Distance 0.6941 1.217 0.3026

TABLE V: MLP finetuned on SORNet embeddings outper-
forms supervised baselines and shows a much smaller gap
between training and test performance.

VI. CONCLUSION

We proposed SORNet (Spatial Object-Centric
Representation Network) that learns object-centric
representations from RGB images. We show that the
object embeddings produced by SORNet capture spatial
relationships which can be used in a downstream tasks
such as spatial relationship classification, skill precondition
classification and relative direction regression. Our method
works on scenes with an arbitrary number of unseen objects
in a zero-shot fashion. With real-world robot experiments, we
demonstrate how SORNet can be used in manipulation of
novel objects.
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