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Abstract— Manipulation tasks involving sequential pick-and-
place actions in human environments remains an open problem
for robotics. Central to this problem is the inability for robots to
perceive in cluttered environments, where objects are physically
touching, stacked, or occluded from the view. Such physical
interactions currently prevent robots from distinguishing indi-
vidual objects such that goal-directed reasoning over sequences
of pick-and-place actions can be performed. Addressing this
problem, we introduce the Axiomatic Particle Filter (APF)
as a method for axiomatic state estimation to simultaneously
perceive objects in clutter and perform sequential reasoning
for manipulation. The APF estimates state as a scene graph,
consisting of symbolic spatial relations between objects in the
robot’s world. Assuming known object geometries, the APF is
able to infer a distribution over possible scene graphs of the
robot’s world and produce the maximally likely state estimate
of each object’s pose and spatial relationships between objects.
We present experimental results using the APF to infer scene
graphs from depth images of scenes with objects that are
touching, stacked, and occluded.

I. INTRODUCTION

In order for autonomous robots to interact fluidly with

human partners, a robot must be able to interpret scenes

in the context of a human’s model of the world. The

challenge is that many aspects of the human’s world model

are difficult or impossible for the robot to sense directly.

We posit the critical missing component is the grounding of

symbols that conceptually tie together low-level perception

and high-level reasoning for extended goal-directed auton-

omy. We specifically face the problem of anchoring [4], a

case of symbol grounding [7], to associate physical objects

in the real world and relationships between these objects

with computationally assertable facts (or axioms), from the

robot’s perception of the world. With a working memory

of grounded axioms about the world, robot manipulators

will be able to flexibly and autonomously perform goal-

directed tasks that require reasoning over sequential actions

(illustrated in Figure 1). Just as important, human users will

be able to more intuitively specify goals for robots, as desired

states of the world, through spatial arrangements, such as the

scene graph representation that is now ubiquitous in modern

3D computer graphics.

Toward this end, we aim to estimate axiomatic represen-

tations of the world that allow robots to build on the body of

work in sequential planning algorithms, which have over a

five-decade history. Described in early work, such as STRIPS

[6] and SHRDLU [21], classical planning algorithms adapted
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theorem-provers to “prove” conclusions about goals based

on axioms that describe the world. A classical planner can

compute actions for a physical robot to perform arbitrary

sequential tasks assuming full perception of the environment,

which is an unrealistic assumption. The real world that

robot attempts to perceive is dominated by uncertainty in the

robot’s sensing and action. This uncertainty affects both the

robot’s axiomatic representation of that world and its ability

to perform effectively.

While domains with uncertainty are traditionally problem-

atic for classical planning, we posit that advances in robot

perception and manipulation with new approaches to anchor-

ing can overcome this uncertainty for effective robot control.

Uncertainty is a result of both measurement by the sensors

and performance by the motors that control the robot. For

example, sensor measurements are frequently not adequate

for segmentation of objects in contact, or identification of

occluded or partially visible objects (Figure 2). The resulting

noisy and incomplete descriptions of a state are unsuitable

inputs for existing planning algorithms.

Generative models provide a means to address uncertainty

probabilistically. Instead of trying to discriminate the state

of the world from uncertain sensory observations, possible

world states can be hypothesized to explain possibilities for

the true world state that could have generated the robot’s

observations. These generated hypotheses form an approxi-

mate probability distribution (or belief) over possible states

of the world. Avoiding the intractability of planning in the

space of this belief, a state estimate from the resulting belief

distribution is taken to represent the current state of the world

for classical planning. This use of the state estimate for

planning emulates the ubiquitous approach to autonomous

navigation for planning from localization state estimates.

In this paper, we propose an approach to axiomatic state

estimation, the Axiomatic Particle Filter (APF), to perform

anchoring and manipulation in cluttered scenes containing

objects in physical contact. We describe the problem of

axiomatic state estimation as the perception of a robot’s

environment axiomatically as a scene graph, where each

object in the scene is a node and inter-object relations are

edges. For autonomous reasoning over sequential tasks, we

discuss how axiomatic state estimates can provide both the

computational tractability of classical planning and robust-

ness of probabilistic inference for perceptual uncertainty.

The Axiomatic Particle Filter is then presented as an im-

plementation that estimates the pose and spatial relations of

objects in a scene from 3D point clouds, assuming known

object geometries. We present experimental results of APF

along with a sequential manipulation for controlled scenes
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Fig. 1: The Axiomatic Particle Filter in a “Tower of Colgate” example. The APF estimates the state of a scene with occlusions and touching objects
(left) as axioms for individual objects and their inter-object relationships (middle). This state estimate is then used by a planner to achieve the goal state
(right), the insertion of the toothpaste box between the two blocks.

involving objects that are physically touching, stacked, and

partially occluded.

II. RELATED WORK

The APF addresses the same problem as Rosman and

Ramamoorthy [17] for estimating the scene graph of an

environment, as a collection of axioms representing objects

with pose and geometry, and inter-object relations. Their

work asserts knowledge of basic contact physics in their in-

terpretation of point clouds into scene graphs. The approach

works well assuming the shapes of the structures and their

configurations have discriminable contact points. In contrast,

the APF does not rely upon such feature extraction and

discrimination. However, in its current implementation, the

APF uses a limited set of relations and requires known object

geometries for tractability.

In the KnowRob system of Tenorth and Beetz [19],

sequential planning for manipulation in household tasks is

performed on symbolic data representations based on the

semantic web. KnowRob accommodates uncertainty at the

symbolic level, such as the selection of subgoals. However,

it relies upon hard state estimates about the poses of and

relations between objects. These estimates, as well as low-

level motion planning, were provided by hardcoded software

components in the Robot Operating System (ROS) [16].

Srivastava et al. [18] perform joint task and motion planning.

This work also does not consider perceptual uncertainty in

relying on hardcoded perception systems that take advantage

of modifications in controlled environments (e.g., “green

screening”, augmented reality tags).

Closest in spirit and approach to the APF is the work by

Mohan et al. [12], [9] for goal-directed control of a robot

arm using the Soar cognitive architecture. Soar’s Spatial

Visual System constructs a scene graph of the environment,

equivalent to the axiomatic representation in this paper, given

low-level probabilistic perception of solid-colored objects.

Soar is then able to reason over actions, in the face of

occlusions, for the robot to play games such as Tic-tac-toe

and Connect-4. Chao et al. [2] take a similar approach to

goal-directed robot learning from demonstration. In contrast

to these projects, the APF maintains a distribution over all

possible scene graphs, and not reliant upon selecting and

maintaining a hard (potentially incorrect) state estimate for

perception. Similar to particle filtering for robot localization,

the APF could be used to complement these methods and

extend to broader collections of robot systems.

It is tempting to characterize the problem of planning

under uncertainty as a POMDP [8]. The state of the world

is only partially observable in the POMDP formulation,

and the process of a robot making a decision and then

acting is formed as a Markov process over the space of all

possible world states. POMDPs have proven computation-

ally infeasible for all but a small number of discrete-state

problems. For robotic manipulation, Lang et al. [10] attempt

to overcome the limitations of the POMDP through online

relational reinforcement learning, using physical simulation

for exploration.

Other groups are looking at using particle filtering to

combine the symbolic and statistical approaches [5], [22].

Our contribution is to bring similar methods into a more

practical realm, and to provide a more faithful grounding of

relational particle filtering with an embodied robot system.

III. AXIOMATIC STATE ESTIMATION

To motivate the problem, consider the scene in Figure 3.

For this scene, assume the goal for the robot is to grab

the bottom yellow block and give it to a human user. It

can be clearly observed that block1 (the top block) and

block2 (the bottom block) are two distinct objects from

the perspective of human perception. A naı̈ve perception of

this scene, common to most robots, would instead perceive

objects that are physically touching as a single object. From

the perspective of common segmentation methods for 3D

point clouds, the belief that these objects are a single object

is an equally likely parsing of the scene.

To capture this uncertainty, we need to maintain a distri-

bution across plausible scene graphs supported by the point

cloud observations. This ambiguity can be resolved at a later

time with further information, such as after a robot action to

grasp one of the objects. In addition, the robot can use either

one of these hypotheses as an estimate of the scene state to

plan and execute a current course of action. If the chosen

state estimate was incorrect, the alternate hypothesis of the

scene should still be represented in the belief distribution.

Assuming the result of the action resolved the ambiguity, this

alternate state hypothesis will now have a greater likelihood
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Fig. 2: Issues with object segmentation using the PR2 Interactive Manip-
ulation [3]. Due to issues of uncertainty in open-loop perception, reliable
autonomous robot manipulation is currently limited to distinctly separated
objects on flat tabletops. For example, consider the scene of 6 simple blocks
on a tabletop and its depth image from a Kinect RGBD camera on the head
of a PR2 robot. The robot can find the tabletop, assuming it is the largest flat
object in the scene. However, it cannot distinguish (and thus grasp directly)
any of the individual objects due to occlusions, physical interaction, and
false positives.

given the new point cloud observation. This distribution will

now clearly distinguish the alternate as the true scene state

estimate from which the robot’s plan can be recomputed.

A. Model

We model this problem of axiomatic state estimation

as a recursive Bayesian filter, a common model for state

estimation in robotics [20]. The sequential Bayesian filter is

described by the following equation, with xt being axiomatic

state x at time t, sensory observations zt , control actions ut

taken by the robot, and xG to be a given axiomatic goal state:

p(xt |z1:t) ∝

p(zt |xt)
∫

p(xt |xt−1,ut−1)p(xt−1|z1:t−1)dxt−1 (1)

Axiomatic state xt is the collection of axioms used to

define a possible world scene graph for the pose and geom-

etry of each objects and inter-object relations. In the general

case, axiomatic state estimation would infer the collection

of axioms and parameters for each axiom. This general

case can lead to a very high dimensional belief space that

would theoretically pose problems for probabilistic inference.

In the following section, we demonstrate how axiomatic

state can be performed within reasonable computational and

conceptual constraints for scenes that are problematic for

many current methods.

The Planning Domain Definition Language (PDDL) [11]

is used to model axiomatic state as a formal language,

which implicitly defines a scene graph. Figure 3 shows

three example scenes defined axiomatically in PDDL. These

axioms include (X object) to assert that object X exists in the

scene, (geometry X V ) to assert X has spatial geometry V

(as a pointer to a geometric mesh represented in the objects

local coordinates), and (pose X Q) to assert X has spatial

pose configuration Q (with respect to the frame of its parent

in the scene graph).

Fig. 3: Examples of axiomatic state for: (left) two blocks stacked on one
another, (middle) one of those blocks possessed by the robot, and (right)
this block placed into a bowl that just happened to appear unexpectedly.

We restrict axioms to be only spatial and physical in

nature, such that they can be evaluated by collision detection,

physical simulation, and robot proprioceptive systems. As

such, our inter-object axioms assert relations only about

whether (in X Y ) an object X is inside another object Y ,

(on X Y ) resting or physically supported by another object

Y , or (has X R) in the possession of a robot R. Each of these

axioms establish that the object X is the child of another

object (or robot) in the scene graph. Additional axioms

can maintain assertions about whether the robot has a free

manipulation endeffector resource and whether an object has

a free support surface for the placing another object.

B. Axiomatic Particle Filtering

At each moment in time, an axiomatic state estimator will

maintain a belief p(xt |z1:t) about the state of the world xt

informed by the robot’s sensor observations zt . In APF, this

belief is maintained as a collection of particle hypotheses,

with each particle hypothesis being a collection of axioms

describing a possible state of the world. Given the action

taken by the robot ut−1 and its prior belief p(xt−1|z1:t−1), the

APF makes a prediction about the distribution of belief at the

current time t by updating and resampling the set of particle

hypotheses based on a given dynamics prior p(xt |xt−1,ut−1).
Particle hypotheses from this predicted belief are then evalu-

ated against sensory observations zt by a likelihood function

p(zt |xt). The result is the posterior distribution p(xt |z1:t)
representing the distribution of belief for the current state of

the world at time t. From this distribution, a single hypothesis

is selected as an estimate x̂t of the actual state of the world,

often as the maximally likely particle hypothesis. The APF

will then give this state estimate x̂t , as a collection of axioms,

to a classical planner to generate the next action ut towards

reaching a goal state xG, also specified as a collection of

axioms.

Within this model of axiomatic state estimation, there are
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Fig. 4: System Architecture for sequential manipulation, with Axiomatic
Particle Filter components highlighted,

a number of broader challenges, which include: prediction

of future states through the dynamics potential, evaluation of

states with respect to observations in the likelihood function,

and generating a computationally tractable and accurately

convergent symbol grounding for the planner.

IV. IMPLEMENTATION

In this section, we discuss at greater depth our imple-

mentation (Figure 4) demonstrating sequential goal-directed

manipulation system using APF. The core of this implemen-

tation is our APF modules for performing state estimation

through prediction, diffusion, measurement and resampling.

In APF, the distribution over states is represented as a mix-

ture model of particles, each representing an axiomatic state.

For computational tractability, we assume object geometries

are known and the object pose consists of two-dimensional

position with respect to the parent object frame. We further

assume that invalid samples, where a child object is outside

the support surface of its parent, can be evaluated and

disregarded through resampling. In actuality, object poses

are conditionally dependent upon inter-object relations and

object geometry, which will be a subject of future work.

As shown in Figure 4, the measurement module gets

the observation from the robot and hypothesized particles

generated from the rendering engine. Robot observations

are in the form of depth images from a Microsoft Kinect

mounted on the head of a Willow Garage PR2 robot. The

likelihood of a particle is calculated by comparing the depth

images of the observation and a graphical rendering of the

axiomatic state hypothesized by a particle. The comparison

function is a sliding window sum of squared distance (SSD)

on two images. The z-buffer of an OpenGL-based graphics

rendering engine is used to generate depth images from

axiomatic states. We assume a known intrinsic calibration

and extrinsic pose for the Kinect camera and that all the

object geometries are known and stored in a geometry

database. Figure 5 shows the point cloud both from Kinect

and the rendering engine for a particular axiom overlayed on

each other. This figure shows how well the rendering engine

Fig. 5: Known geometries for the two stacked blocks example (yellow on
green and green on a table) shown on the observed point cloud data.

is able to generate depth images corresponding to a given

axiomatic state.

Result of the measurement module is the posterior dis-

tribution representing the distribution of belief for the cur-

rent state of the world. If the particles converge within

a threshold, the planner takes the maximum likely state

estimate and computes a plan of action for the robot to

execute. In parallel, the resampling module takes in the

posterior distribution and performs importance sampling over

their states to give the new distribution of particles to the

prediction module. Based on the robot action decided by

the planner, the predict module updates the state of the

particles. The diffusion module adds noise randomly to this

distribution of particles and measurement is performed again

with a new observation from the robot. The diffusion module

also updates the rendering engine with new set of axiomatic

states to generate particles.

A STRIPS-based planner [6] with A-star implementation

is used for sequential planning in our manipulation system.

With goal and the current state of the world, the planner

would compute a sequence of actions towards the goal and

output the next immediate action to the robot. Actions from

the planner will be pick-and-place actions for a specific

object in the scene. Given this object’s pose and geometry,

from the geometry database, PR2 Tabletop Manipulation

[3] is used to execute these manipulation actions. For the

current implementation, replanning does not occur once a

state estimate is taken from the converged APF.

V. RESULTS

We conducted two sets of experiments to demonstrate our

manipulation system. In our baseline experiment, we evalu-

ated the manipulation system in a scenario of two blocks

in different positions representing clutter: non-touching,

stacked, and partially occluded. We then considered a more

complex scenario of three stacked blocks that need to be

rearranged in an arbitrary order from different cluttered

starting conditions.
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Fig. 6: Convergence of particles from the initial randomly generated states to the estimated state

A. Two stacked blocks baseline

In this experiment, we tested the APF system on three

different observations representing different spatial relation-

ships (Figure 6) and their convergence. In the initialization,

the system will uniformly generate possible scene graphs and

positions of objects. Figure 6a shows a few samples of the

generated particles in initialization and in this experiment, the

system generate 100 particles to track possible world states.

Figures 6b-d show the convergence in different scene graph

cases for “separated”, “stacked”, and “partially occluded”,

respectively. Note that Figure 6d is a special case of Fig-

ure 6b which they have the same axioms while two blocks

in Figure 6d are touching with each other. The far right

panels show the maximum likely estimated state to contrast

with the ground truth observation. With our implementation

and constant object orientation, convergence typically occurs

within 10 iterations.

For the “stacked” condition, the PR2 robot was given the

goal to reverse the stacking order of the perceived blocks

(Figure 7). The goal of this task is to make the robot perform

actions that change the configuration of the blocks from

initial state (green on top of yellow block) to goal state

(yellow on top of green block). It must be noted that the

robot does not have access to the color of the blocks, but

only the non-RGB depth image. The use of color for these

blocks is only for the purpose of visibility and clarity.

Once the particle filter converges, the estimator results

in the centroid positions of the blocks. With the known

geometry of these blocks, these centroids are converted to

3D ROS tf transforms in world coordinates for input to the

robot’s manipulation stack. Figure 5 shows the geometries

of the blocks projected onto the point cloud of the scene

generated from the depth map. This image shows that the

estimator is able to converge to a state that has one block

stacked over the other, which is close to the ground truth

state of the blocks. This convergence is also shown in the

Figure 6.

From this state estimate, the planner is given the initial

and goal state of the blocks and it returns the sequence of

actions. As shown in Figure , this plan involves changing

the state from Figure 7a to the last figure of Figure 7b, by

doing a pick up action. Once the top object is picked by the

robot, a place action is performed which is shown in Figure

7c. This frees the bottom object for pickup which is shown

in Figure 7d. Placing the yellow block on the green block

would complete the task assigned to the robot, hence a place

action is performed as shown in the Figure 7e.

B. Manipulating three stacked objects

To explore a more complex manipulation task, another

object was added to the baseline scene, a box of Colgate

toothpaste. This box has roughly the same geometry as our

existing blocks, but a vastly different appearance and texture.

The goal for the robot was to build The Tower of Colgate

by stacking the three objects in an arbitrary order, given by

a user, from an arbitrary initial configuration.

The first condition examined was starting from an initial

condition where all three objects stacked on top of each other.

Shown in Figure 8, the APF is able to estimate the scene

graph of this stacking configuration. With this state estimate,

the robot can plan and execute actions that will reconfigure

the Tower of Colgate in any arbitrary order, such as putting

the toothpaste box on top. It needs to be noted that the objects

are not specifically recognized with an identifier, such as

block1 or colgate. Instead, each object is identified only with

respect to its configuration in the scene, i.e., its order in the

stack.

An even more compelling case is shown in Figure 1 and

expounded upon in Figure 9. In this scenario, the clutter

scene faces several potential points of failure simultaneously:

stacking, partial occlusion, and touching contact. The APF
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(a) Initial configuration (b) Pick action of block2 (c) Place action of block2

(d) Pick action of block1 (e) Place action of block1

Fig. 7: Sequence of the actions and states during the task execution by the robot

is able to handle this initial condition well, yielding as state

estimate suitable for planning and achieving the desired order

for the Tower of Colgate. The link to the video is provided

here1.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have developed an APF system bringing

together axiomatic state that describes the world and the

particle filter to estimate the state. Each hypothesized particle

represents a scene graph and APF can get the maximum

likely particle as the current state for planners to compute

actions towards goal. We also used OpenGL rendering engine

to render depth image from hypothesized particle with known

geometry and compare it with the depth image from robot

sensor which acts as an observation. We have shown how

the proposed method can be used to estimate the state of

the environment and perform sequential manipulation in

cluttered environments.

Though our approach to grounding human-robot inter-

action axiomatically has distinct potential, there are some

immediately foreseeable technical challenges. First among

them is the high dimensionality of the belief space in which

axiomatic beliefs exist. Each potential object or action that

could be available to a robot adds dimensions to the belief

space. In an unstructured world with no limit on object and

actions, this expansion of dimensionality translates into a

very large number of particles, and therefore an infeasible

computational burden, needed to approximate the distribution

of robot states. Finding ways to reduce the dimensionality

of the space will be essential to the success of our approach.

For example, Boyen and Koller [1] offer a principled method

of approaching this problem through factoring the axiom set,

1https://youtu.be/8LFghHtEIAI

and Nitti et al. [15], [14], have suggested ways to implement

these methods in the context of a particle filter. Ng et al. [13]

suggest a method of sampling particle filters in a manner that

accommodates the factoring of the axiom set.

We currently limit objects to rectangular blocks without

orientation. A next obvious extension would be to model

objects common to human household environments. Model-

ing household objects will require special scanning systems

for offline modeling or human-assisted interactive systems

for modeling directly from a robot‘s visual sensors. In

addition to bootstrapping the APF, estimation with complete

object geometries will be needed for robust object placement

actions during manipulation.
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