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The ability to use tools is critical to enable robots to perform
assembly, repairs and maintenance of equipment in remote
locations. To effectively use tools, a robot needs to identify
and localize articulated objects in unstructured, cluttered
environments. Rather than representing the scene in terms
of object classes, it can be represented as a collection of
object affordances [1], or actions available to the robot.
Since affordances tend to be associated with object parts,
localizing objects by parts is useful. A parts-based method is
robust to occlusions because the relationships between
parts can be used to infer the location of occluded parts. We
propose a parts-based pose estimation method which
combines domain knowledge about the object model with a
deep learned detector using generative inference.
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Objects are modelled as a Markov Random Field (MRF) where each
node is the pose of an object part. We maintain a belief over object
pose as a set of particles and perform inference using belief
propagation [2]. We assume mesh models and part models are
given, as well as part affordances, as affordance templates [3].
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To loosen our reliance on mesh models, we can directly detect the
affordances in the scene, as in [4,5]. The objects can be
represented in terms of their affordances and geometric
constraints, creating a generalizable object representation.
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Unary potential: Learned model. Describes correspondence of the
observation to a given hypothesis

Pairwise potential: Describes agreement of the hypothesis to the
geometric parts-based model.
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Perceiving a scene as a collection of actions available to the robot is more 
effective for task execution.


