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Abstract— We present a differentiable approach to learn the
probabilistic factors used for inference by a nonparametric
belief propagation algorithm. Existing nonparametric belief
propagation methods rely on domain-specific features encoded
in the probabilistic factors of a graphical model. In this
work, we replace each crafted factor with a differentiable
neural network enabling the factors to be learned end-to-
end, using an efficient optimization routine from labeled
data. By combining differentiable neural networks with an
efficient belief propagation algorithm, our method learns to
maintain a set of marginal posterior samples. We evaluate
our differentiable nonparametric belief propagation (DNBP)
method on a set of articulated pose tracking tasks and compare
performance with convolutional neural networks. Results from
this comparison demonstrate the effectiveness of using learned
factors for tracking and suggest the practical advantage over
hand-crafted approaches. The project webpage is available at:
http://progress.eecs.umich.edu/projects/dnbp.

I. INTRODUCTION

Perception of articulated object pose in noisy environments
remains a significant challenge for robotic applications.
Nonparametric belief propagation (NBP) algorithms [1], [2]
have proven effective for inference in these environments [3],
[4], [5]. Moreover, these algorithms are able to account
for uncertainty in their estimates when environmental noise
is high and show promising computational properties in
practice [4], [6]. Their adaptability to new applications,
however, is limited by the need to define hand-crafted
functions that describe the distinct statistical relationships in
a particular dataset. In this paper, we present a differentiable
nonparametric belief propagation (DNBP) method, a hybrid
approach which leverages neural networks to parameterize the
NBP algorithm. Specifically, we develop a differentiable ver-
sion of the efficient pull message passing nonparametric belief
propagation (PMPNBP) algorithm presented by Desingh et
al. [4]. We are inspired by the differentiable particle filter
proposed by Jonschkowski et al. [7]. Similar to this approach,
DNBP performs end-to-end learning of each probabilistic
factor required for graphical model inference.

The effectiveness of DNBP is demonstrated on two
challenging articulated tracking tasks in noisy environments.
Results show that our approach can leverage the graph
structure to report uncertainty about its estimates while
significantly reducing the need for prior domain knowledge
required by previous NBP methods. DNBP performs competi-
tively in comparison to traditional learning-based approaches.
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Collectively these results indicate that DNBP has the potential
to be successfully applied to robotic perception tasks, such
as pose estimation, where uncertainty estimation is crucial.

II. RELATED WORK

Probabilistic graphical models, such as the Markov Random
Field (MRF), describe probability distributions as a collection
of nodes and edges. The nodes of a graphical model
correspond to random variables while the edges represent
probabilistic relationships between the variables. Given a
graphical model, belief propagation (BP) is a message passing
algorithm for inferring the marginal distributions expressed
within the graph. BP computes exact marginal distributions
on trees [8], and has demonstrated empirical success on
loopy graphs [9], [10], [11], [12]. In continuous, high-
dimensional spaces, BP becomes intractable due to its demand
for integral computation. Nonparametric belief propagation
(NBP) methods approximate the marginal distributions as
mixtures of Gaussians and define efficient message passing
schemes that perform inference [2], [1], [13], [3]. Particle
belief propagation [14] approximates marginal distributions
by a set of particles, yielding tractable algorithms for high-
dimensional spaces [4], [5].

An important limitation of the existing NBP approaches is
their assumption that the probabilistic relationships expressed
in the graph model are provided as input. In these approaches,
the factors must be modeled or trained using domain knowl-
edge unique to each application. The potential for neural
networks to learn the parameters used by alternative inference
techniques has been demonstrated [15], [16], [17]. Other
works have demonstrated learned observation likelihoods
within nonparametric inference frameworks [18], [5]. For
robotic perception applications, end-to-end differentiable
Bayes filtering algorithms enable automatic learning of
probabilistic factors and have been shown to outperform
recurrent neural networks [19], [20], [7], [21], [22], [23],
[24]. In contrast, the focus of this study on articulated object
pose estimation motivates the use of NBP since its ability to
factor high-dimensional spaces is associated with improved
performance in the face of increased dimensionality [4], [5].

This study sets out to explore the potential for an end-to-end
deep learning framework to be used to learn the probabilistic
factors for nonparametric belief propagation.

III. DIFFERENTIABLE NONPARAMETRIC BELIEF
PROPAGATION

Consider an MRF model defined by the undirected graph
G = {V, E}, where V denotes a set of nodes and E denotes a
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Fig. 1: Architecture diagram of differentiable nonparametric belief propagation. DNBP combines domain knowledge in the form of graphical models with
differentiable neural networks for tractable inference in continuous spaces. Input features from a deep neural network and the probabilistic relationships
encoded in a graphical model are learned jointly in an end-to-end fashion using backpropagation. Following offline training, DNBP can be applied to
unseen data without hand-tuning.

set of edges. An example MRF model is shown in the center
column of Fig. 1. Each node in V represents an observed or
unobserved random variable while each edge in E represents a
pairwise relationship between two random variables in V . The
MRF formulation specifies the joint probability distribution
for this collection of random variables as:

p(X ,Y) =
1

Z

∏
(s,d)∈E

ψs,d(Xs, Xd)
∏
d∈V

ϕd(Xd, Yd) (1)

where X = {Xd | d ∈ V} is the set of unobserved variables
and Y = {Yd | d ∈ V} is the set of corresponding observed
variables. The scalar Z is a normalizing constant. For each
edge, the function ψs,d(·) is the pairwise potential, describing
the compatibility of neighboring variables Xs and Xd. For
each node, the function ϕd(·) is the unary potential, describing
the compatibility of an unobserved variable Xd with a
corresponding observed variable Yd.

Given the factorization in Eq. (1), a nonparametric belief
propagation method such as PMPNBP [4] may be used to
infer the marginal posterior distributions, or ’beliefs’, at each
unobserved node. We propose a differentiable nonparametric
belief propagation (DNBP) method. DNBP is a message-
passing algorithm that maintains a representation of the
uncertainty in its estimate by efficiently approximating the
marginal posterior distributions encoded in an MRF. DNBP
represents the belief and messages at iteration t by sets of
N and M weighted particles respectively:

beltd(Xd) =
{(
µ
(i)
d , w

(i)
d

)}N

i=1
(2)

mt
s→d =

{(
µ
(i)
sd , w

(i)
sd

)}M

i=1
(3)

To compute the beliefs at each node of the MRF, DNBP
relies on an iterative “pull” message passing strategy similar
to the one presented by [4]. In this strategy, each iteration of
the algorithm is defined in terms of a message update step
and a belief update step1. The message update generates a
new set of message particles as a reweighted set of samples
from the previous iteration’s belief. Crucially, our method

1Implementation of message and belief update steps as well as experiment
datasets are available at: https://github.com/opipari/diffBP

avoids the need to define hand-crafted functions for each
domain by modeling the potentials needed for computing the
distributions in Eq. (1) with neural networks that are trained
end-to-end as opposed to hand-crafted ones. Following a
message update, the belief update combines information that
is incoming to each node from the newly generated messages.
The final marginal posterior estimates result from the belief
update.

The following sections describe the neural networks used
to compute the message and belief updates.

Unary Potential Functions: According to the factorization
of the MRF joint distribution in Eq. (1), each unobserved
variable Xd, for d ∈ V , is related to a corresponding observed
variable Yd by the unary potential function ϕd(Xd, Yd).
DNBP models each unary function with a feedforward neural
network. The unary for a particle, xd, given an observed
image, yd, is:

ϕd(Xd = xd, Yd = yd) = ld (xd ⊕ fd(yd)) (4)

where fd is a convolutional neural network, ld is a fully
connected neural network, and the symbol ⊕ denotes con-
catenation of feature vectors.

Pairwise Potential Functions: For any pair of hidden
variables, Xs and Xd, which are connected by an edge in E , a
pairwise potential function, ψs,d(Xs, Xd), represents the prob-
abilistic relationship between the two variables. DNBP models
each pairwise potential using a pair of feedforward, fully
connected neural networks, ψs,d(Xs, Xd) = {ψρ

sd(·), ψ∼
sd(·)}.

The pairwise density network, ψρ
sd(·), evaluates the un-

NETWORK UNIT LAYERS

fs 5 x [conv(3x3, 10, stride=2, ReLU), maxpool(2x2, 2)]
ls 2 x fc(64, ReLU), fc(1, Sigmoid scaled to [0.005, 1])
ψρ
sd 4 x fc(32, ReLU), fc(1, Sigmoid scaled to [0.005, 1])

ψ∼
sd 2 x fc(64, ReLU), fc(2)
τ∼s 2 x fc(64, ReLU), fc(2)

TABLE I: Network parameters of learned DNBP potential
functions used on both simulated articulated tracking tasks.
Note s, d ∈ V , and (s, d) ∈ E . Unary potentials: ls(fs(·)).
Pairwise potentials: {ψρ

sd, ψ
∼
sd}. Particle diffusion: τ∼s .

https://github.com/opipari/diffBP
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Fig. 2: Average error of DNBP and LSTM predictions as a
function of clutter ratio and keypoint type for the double
pendulum tracking problem.

normalized potential for a pair of particles. The pairwise
sampling network, ψ∼

sd(·), is used to form samples of node
s conditioned on node d and vice versa.

Particle Diffusion: DNBP uses a learned particle diffusion
model for each hidden variable, modeled as distinct feedfor-
ward neural networks, τ∼d (·) for d ∈ V . This diffusion model
replaces the Gaussian diffusion models typically used by
particle-based inference methods that encourage exploration
of the state space. At the outset of message generation at
iteration t, DNBP’s belief particles from iteration t− 1 are
resampled then passed through the diffusion model at the
beginning of iteration t to form the messages used to update
the distributions at iteration t.

Particle Resampling: The final operation of the belief
update algorithm in NBP is a weighted resampling of belief
particles. This resampling operation is non-differentiable [21],
[7]. It follows that the iterative belief update algorithm is non-
differentiable due to the resampling step. DNBP addresses
the non-differentiability of the belief update algorithm by
relocating the resampling and diffusion operations to the
beginning of the message update algorithm. The resulting
algorithm is differentiable through one belief update and
message passing update.

A. Supervised Training

DNBP’s training approach is inspired by the work of [7]
with modifications to enable learning the potential functions
distinct to DNBP. During training, DNBP uses a set of
observation sequences, and a corresponding set of ground
truth sequences. Using the observation sequences, DNBP
estimates belief of each unobserved variable at each sequence
step. Then, by maximizing estimated belief at the ground
truth label of each unobserved variable, DNBP learns its
network parameters by maximum likelihood estimation.

Objective Function: Given a set of weighted particles
representing the belief of Xd produced by the inference
procedure at iteration t, the density of the belief can be
expressed as a mixture of Gaussians, with a component
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Fig. 3: Tracking of double pendulum by DNBP under
partial occlusion (orange block). Uncertainty associated with
predictions is shown as samples from the joint distribution
in pink and blue (d,e,f). (g) Marginal entropy for each
keypoint across test sequence; base keypoint (red), middle
keypoint (green), end-effector keypoint (blue). Sequence
steps highlighted by gray correspond to images in which
> 25% of the pendulum is occluded.

centered at each particle. The density of a sample xd can be
computed as follows:

bel
t

d(xd) =

N∑
i=1

w
(i)
d · N (xd;µ

(i)
d ,Σ) (5)

DNBP defines a loss function on each hidden node d ∈ G as:

Lt
d = − log(bel

t

d(x
t,∗
d )) (6)

where xt,∗d denotes the ground truth label for node d at
sequence step t. The loss for each hidden node is computed
and optimized separately. At each sequence step during
training, DNBP iterates through the nodes of the graph,
updating each node’s incoming messages and belief followed
by a single optimization step of Eq. (6) using stochastic
gradient descent.

IV. EXPERIMENTS

The capability of DNBP is demonstrated on two challeng-
ing articulated tracking tasks. The performance of DNBP
is compared with a baseline LSTM neural network [25]
and a convolutional neural network [26] on the two tasks
respectively. In the first task, both DNBP and LSTM attempt
to track the 2-dimensional position of each joint of a simulated
double pendulum, as shown in Fig. 3, that swings under the
effect of gravity. To emulate environments where occlusion is
common, simulated clutter in the form of static and dynamic
geometric shapes are rendered into the image sequences. The
second task involves tracking the 3-dimensional position of
each joint of a human hand. DNBP models the kinematic
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Fig. 4: Output from DNBP throughout a chosen sequence of hand tracking.
DNBP maintains plausible estimates of the hand pose in cases of occlusion
(Frames 20, 30, 40) and recovers with improved observability (Frame 50).

structure in each task using an MRF model, in which each
unobserved variable corresponds to the position of a particular
joint keypoint and each observed variable corresponds to an
observed image.

A. Double Pendulum Tracking

As shown in Fig. 2, the keypoint tracking error of DNBP is
directly compared to that of the LSTM baseline on a held-out
test set. Results from this comparison show that DNBP’s
average keypoint tracking error is comparable to the LSTM’s
corresponding error for both the mid joint and end effector
keypoints, independent of clutter ratio. For the base joint
keypoint, which is stationary at the center position of every
image, the LSTM was able to memorize the correct position
while DNBP registers a consistently larger error. The lack
of memorization of the base joint position is likely due to
the use of particle diffusion within DNBP’s message passing
scheme, which encourages exploration at the expense of
memorization. Next tested was the hypothesis that the DNBP
model would generate increased uncertainty under conditions
in which occlusions are present. Results from this test, shown
in Fig. 3, demonstrate that under optimal conditions, with
minimal occlusion, the output of DNBP indicates a low level
of uncertainty. In contrast, under conditions of occlusion, the
model’s output indicates relatively high levels of uncertainty
precisely at frames in which a superimposed object occludes
a portion of the double pendulum. These results demonstrate
that DNBP has the ability to represent uncertainty along
with its estimates thereby allowing DNBP to automatically
identify cases in which it expects to be unreliable, which is
a crucial necessity for robots acting in unstructured human
environments.

B. Human Hand Tracking Results

To evaluate DNBP’s capability for application to real-
world tasks, the algorithm’s state estimation and tracking
performance was evaluated on the FPHAB dataset [26].
This is a challenging dataset with extreme occlusions where
complete observations of all the finger joints are rare. Example
output estimates from DNBP is included in Fig. 4. As a
quantitative evaluation of estimation accuracy, Euclidean error
between the estimated and ground truth pose is measured for
every frame in the test set. For this first evaluation, DNBP is

Error Threshold (mm)
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Fig. 5: Quantitative comparison between DNBP and neural network baseline
on hand pose tracking task of the FPHAB dataset. For each model the percent
of frames with predicted pose less than a set threshold is calculated as the
threshold is varied from 0mm to 80mm.

applied as a frame-by-frame estimator without maintaining its
belief over time. The quantitative results from this experiment,
are included in Fig. 5 with direct comparison to a pure neural
network baseline. The results from this experiment indicate
that for error thresholds below 50mm, DNBP will consistently
have an accuracy of 95% and above.

Following the comparison against a state of the art
baseline, it was hypothesized that DNBP’s performance
would improve when applied as a tracking method which
maintains belief over time. To perform this test, DNBP was
applied sequentially to each test sequence and evaluated
under the same error metric. The result from this test, as
shown in Fig. 5, demonstrates that DNBP does improve in
terms of frame error when allowed to track its uncertainty
over time. Qualitative examples (on frames from randomly
chosen sequences) and tracking videos showing DNBP’s
estimates and belief are included on the project webpage:
http://progress.eecs.umich.edu/projects/dnbp.

V. DISCUSSION

In this work, we proposed a novel formulation of belief
propagation which is differentiable and uses a nonparametric
representation of belief. It was hypothesized that combining
maximum likelihood estimation with the nonparametric
inference approach would enable end-to-end learning of the
probabilistic factors needed for inference. The hypothesis
was tested on both qualitative and quantitative experiments.
Results from this study demonstrate DNBP successfully learns
to encode probabilistic factors which enable competitive
performance on robotic pose estimation tasks. These results
motivate further experiments to understand how DNBP may
be used in conjunction with uncertainty-aware planning
systems for robotic manipulation tasks.

http://progress.eecs.umich.edu/projects/dnbp
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