Tracking Large Scale Articulated Models with Belief
Propagation for Task Informed Grasping & Manipulation

Karthik Desingh, Jana Pavlasek, Cigdem Kokenoz, Odest Chadwicke Jenkins
Laboratory for Progress
Division of Computer Science and Engineering, Robotics Institute, University of Michigan

o - \ Sai ” o ’ o ’ o DAt aey o M G a o v M G i a o v M G i . - \ =
o S = . e = e T e g g, T e S S e I P R P e ) Y R SR O e v

2 Maintaining belief over possible hypotheses will enable |
robots to perform tasks under partial observations. |
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Objectives

1. Estimate and track the pose of large scale
articulated models such as kitchen.

2. Maintain and propagate belief over the possible
poses of the articulated models.

Challenges
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occlusions and change of pose.
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Approach and Related Work

The problem can be formulated as a 1 Messages approximated as a mixture of Gaussians and sampling
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articulation constraints between the

parts. Efficient Belief Propagation tep(s) — t —s
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perform pose estimation and tracking of ely = (w3, ps”, AY) 1 1< i < T}
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