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Abstract— Goal-directed manipulation requires a robot to
perform a sequence of manipulation actions in order to achieve
a goal. A sequential pick-and-place actions can be planned
using a symbolic task planner that requires current scene
and goal scene represented symbolically. In addition to the
symbolic representation, an object’s pose in the robot’s world
is essential to perform manipulation. Axiomatic scene graph
is a standard representation that consists of symbolic spatial
relations between objects along with their poses. Perceiving
an environment to estimate its axiomatic scene graph is a
challenging problem especially in cluttered environments with
objects stacking on top of and occluding each other. As a step
towards perceiving cluttered scenes, we analyze the clutterness
of a scene by measuring the visibility of objects. The more
an object is visible to the robot, the higher the chances of
perceiving its pose and manipulating it. As the visibility of the
object is not directly computable, a measure of uncertainty
on object pose estimation is necessary. We propose a belief
propagation approach to perceive the scene as a collection
of object pose beliefs. These pose beliefs can provide the
uncertainty to allow or discard the planned actions from the
symbolic planner. We propose a generative inference system
that performs non-parametric belief propagation over scene
graphs. The problem is formulated as a pairwise Markov
Random Field (MRF) where each hidden node (continuous pose
variable) is an observed object’s pose and the edges (discrete
relation variable) denote the relations between the objects. A
robot experiment is provided to demonstrate the necessity of
beliefs to perform goal-directed manipulation.

I. INTRODUCTION

Autonomous robots must robustly perform goal-directed
manipulation to achieve tasks specified by a human user.
Goal-directed autonomy is a challenging field of research
where robots must interpret a goal state and achieve it
by performing sequence of manipulation actions. If initial
and the goal states are represented symbolically, classical
sequential planning algorithms [6], [20] can be used to
plan a sequence of actions that achieves the goal state. In
order to execute a planned action, the robot also requires
object’s pose in the robot’s world. Axiomatic scene graph
is a standard representation that encompasses the symbolic
spatial relations between the objects along with their poses.
However, perceiving an axiomatic scene graph is challenging
especially in cluttered environments where the objects are
occluded and only partially visible to the sensor. A classical
planner assumes full perception of the scene while planning
a sequence of actions. This assumption demands an accurate
estimation of the scene from a perception system. This
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Fig. 1: Robot is observing a scene with objects in a tray. The goal of
the object is to perform sequence of manipulation actions and achieve a
goal scene. The bottom row shows object bounding boxes provided by a
object detector, initial and goal scene graphs with object relations (child
node on parent node) known a priori. The colors of the nodes in the scene
graph corresponds to objects whose detections have the same color. The
numbers below the leaf nodes on the initial scene graph corresponds to
their percentage of visibility to the robot at this view point.

is an unrealistic assumption given the complexity of the
typical human environments. An object’s pose estimation
depends on the observability/visibility of the object, which
in turn affects the success of the manipulation. However, a
perception system cannot measure the visibility of an object
directly and hence should be able to provide a measure of
uncertainty in the pose estimation. In this paper we propose
a belief propagation based approach to estimate not only the
pose of the objects but also a measure of uncertainty. This
measure of uncertainty is used to allow or discard the actions
planned by the symbolic planner.

An example task is shown in Fig. 1 where a robot is
given a tray full of objects and commanded to achieve a
goal scene state where all the objects are on the table. If the
scene graph is provided to the robot to simplify the goal-
directed manipulation task, a planner can be used to generate
a plan. As the planner doesn’t have any information about the
objects’ pose in the world; all leaf nodes are equally likely



to be part of the first pick-and-place action. But in the real
world, only a some of these leaf node objects are visible.
the objects whose visibilities are in red color are visible less
than 30%. Hence, the perception system must output high
uncertainty for these objects. In this fashion the perception
system helps prune all the implausible actions.

We formulate the problem as a graphical model to perform
belief propagation. The graphical model approach has been
proven to perform well for articulated 3D human pose
estimation [15] and visual hand tracking problems [17].
In such problems the inference leverages the probabilistic
constraints posed on the articulations of body parts by
the human skeletal structure. These structural constraints
are modeled precisely with domain knowledge and do not
change from scene to scene for human body. However, in the
proposed framework we infer the pose of the objects using
their scene specific relationship. For example, object A and
B can have an on relationship in a current scene, however
it is not a universal relationship to hold. But object A
and B, not inter-penetrating each other is universal physical
relationship to hold. Potentials defined on these relationships
are generalized to perform for different scene graphs that
changes scene to scene along with actions performed. Ideally
an inference algorithm for goal-directed manipulation should
produce axiomatic scene graph [18]. This paper however, is
focused only on estimating the object poses. The problem
is formulated as a Markov random field (MRF) where each
hidden node represents an observed object’s pose (continuous
variable), each observed node has the information about the
object from observation (discrete) and the edges of the graph
denote the known relationships between object poses.

The main contribution of this paper is a generative scene
understanding approach designed to support goal-directed
manipulation. Our approach models inter-object relations in
the scene and produces belief over object poses through
nonparametric belief propagation (NBP)[16]. We detail the
adaptation of NBP for scene estimation domain. In addition
to this, we propose a measure to analyze the clutterness of
a scene in terms of objects’ visibility.

II. RELATED WORK

Our aim is to compute a scene estimate that allows a robot
to use sequential planning algorithms, such as STRIPS [6]
and SHRDLU [20]. A scene graph representation is one
way to describe the world. However, the information on
objects’ poses should be perceived precisely to compliment
the planning algorithms in order to let the robot make
a physical change in the world. Chao et al. [1] perform
taskable symbolic goal-directed manipulation by associating
observed robot percepts with knowledge categories. This
method uses background subtraction to adaptively build
appearance models of objects and obtain percepts but is
sensitive to lighting and object color. Narayanaswamy et
al. [12] perform scene estimation and goal-directed robot
manipulation in cluttered scenes for flexible assembly of
structures. In contrast use the scene graph prior to run
a perception system that estimates the object poses while

maintaining the scene graph relations. Sui et. al [18] attempt
to estimate a scene in a generative way; however, physical
interactions are indirectly constrained by collision checks on
object geometries. We avoid these expensive collision checks
on object geometries and use potential functions that softly
constraints inter-object collisions. Dogar et al. [5] use physics
simulations and reasoning to accomplish object grasping and
manipulation in clutter. However, their work does not include
the object-object interactions in their clutter environments.
The method proposed in this paper does not depend on a
physics engine and also avoids explicit collision checking.
Collet et al. [4] and Papazov et al. [13] apply a bottom up
approach of using local features and 3D geometry to estimate
the pose of objects for manipulation. In our work we product
not only the object pose estimates but also belief over the
object poses, which gives the confidence on the estimation.
ten Pas and Platt [19] propose a model free approach localize
graspable points in highly unstructured scenes of diverse
unknown objects, which is directed towards pick and drop
applications and doesn’t apply to pick and place context.
Model based robot manipulation as described in [3] can
benefit from a scene graph based belief propagation proposed
in this paper.

Probabilistic graphical model representations such as
Markov random field (MRF) are widely used in computer
vision problems where the variables take discrete labels
such as foreground/background. Many algorithms have been
proposed to compute the joint probability of the graphical
model. Belief propagation algorithms are guaranteed to con-
verge on tree-structured graphs. For graph structures with
loops, Loopy Belief Propagation (LBP) [10] is empirically
proven to perform well for discrete variables. The problem
becomes non-trivial when the variables take continuous val-
ues. Sudderth et.al (NBP) [16] and Particle Message Passing
(PAMPAS) by Isard et.al [8] provide sampling approaches to
perform belief propagation with hidden variables that take
continuous values. Both of these approaches approximate
a continuous valued function as a mixture of weighted
Gaussians and use local Gibbs sampling to approximate
the product of mixtures. This has been effectively used in
applications such as human pose estimation [15] and hand
tracking [17] by modeling the graph as a tree structured
particle network. This approach has not been applied to
scene understanding problems where a scene is composed
of household objects with no strict constraints on their
interactions. In this paper we propose a framework that can
compute belief over object poses with relaxed constraints on
their relations using a scene graph.

Model based generative methods [11] are increasingly be-
ing used to solve scene estimation problems where heuristics
from discriminative approaches such as Convolutional Neural
Networks (CNNs) [14], [7] are utilized to infer object poses.
These approaches don’t account for object-object interactions
and rely significantly on the effectiveness of recognition. Our
framework doesn’t completely rely on the effectiveness of
training the recognition system and can handle noisy priors
as long as the priors have 100% recall.
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Fig. 2: Graphical Model (c) is constructed using the scene graph prior
along the observed 2D object detections derived from the RGBD sensor
data. In the constructed graphical model the edges denote the type of relation
between the objects: black for support relations, cyan: non-colliding relation.
The colors in (b) correspond to the object bounding box colors in (a).
Inference on this graph is initialized with the object bounding boxes and
the corresponding point clouds. Initial belief samples are shown in (d) and
the inference iteratively propagates these beliefs to (e). The final estimate
is shown in (f) using a post processing step using Iterative Closest Point
(ICP) (discussed later in the paper).

Recent works such as [21] propose systems that can
work on wild image data and refine the object detections
along with their relations. However these methods do not
consider the continuous pose in their estimation and work
in pixel domain. Chua et. al [2] propose a scene grammar
representation and belief propagation over factor graphs,
whose objective is in generating scenes with multiple-objects
satisfying the scene grammars. We specifically deal with
RGBD observations and infer with continuous variables
pose variables whereas Chua et. al [2] applies to RGB
observations and discrete variables.

III. METHODOLOGY

A. Problem Statement

A robot observes a scene using an RGBD sensor, which
gives an RGB image I and a point cloud P . An object
detector takes I as an input and produces object bounding
boxes B = {b1, b2, ..., bk} and corresponding confidence
scores C = {c1, c2, ..., ck}, with k being the number of
detections. We make an assumption that the detector has
a 100% recall.Using these detections, an undirected graph
G = (V,E) is constructed with nodes V and edges E. For
each unique object label from the object detection result,
there exists a corresponding observed node in the graph G.
Let Y = {ys | ys ∈ V } denote the set of observed variables,
where ys = (ls, Bs, Cs), with detections Bs ⊆ B and
confidences Cs ⊆ C from the object detector corresponding
to object label ls ∈ L. Each observed node is connected to a
hidden node that represents the pose of the underlying object.
Let X = {xs | xs ∈ V } denote a set of hidden variables,
where xs ∈ Rd with d being the dimensions of the pose of
the object. This graph G consists of N hidden nodes if there
are N objects with labels L = {l1, l2, ..., lN} present in the

scene. However, k ≥ N as there could be multiple detections
with the same label. G represents a scene with the observed
and hidden nodes. Scene estimation involves finding this
graph structure along with the inference on the hidden nodes.
In this paper we assume that the graph structure is known
apriori. This known graph structure in the form of scene
graph provides the edges E showing the relations between
the hidden nodes. The edges in our problem represent the
relation between the objects in the scene. More precisely,
we have two types of edges: one showing that an object is
supporting/supported by another object (dark black in Fig 2),
the other one indicating that an object is not in contact with
another object (cyan in Fig 2). The joint probability of this
graph considering only second order cliques is given as:

p(x, y) =
1

Z

∏
(s,t)∈E

ψs,t(xs, xt)
∏
s∈V

φs(xs, ys) (1)

where ψs,t(xs, xt) is the pairwise potential between nodes xs
and xt, φs(xs, ys) is the unary potential between the hidden
node xs and observed node ys, and Z is a normalizing
factor. Pairwise potential can be modeled using the type
of edges to perform the inference over this graph. We
use Nonparametric Belief Propagation (NBP) [16] to pass
messages over continuous variables and perform inference
on a loopy graph structure such as ours (see Fig 2).

After converging over iterations, the maximum likelihood
estimate of this marginal belief gives the pose estimate xests
of the object corresponding to the node in the graph G. The
collection of all these pose estimates form the scene estimate.

B. Nonparametric Belief Propagation

Loopy belief propagation in the context of continuous vari-
ables is shown in Algorithm 1. Computing message updates
in continuous domain is nontrivial. A message update in a
continuous domain at an iteration n from a node t→ s is:

mn
ts(xs)←

∫
xt∈Rd

(
ψst(xs, xt)φt(xt, yt)∏

u∈ρ(t)\s

mn−1
ut (xt)

)
dxt (2)

where ρ(t) is a set of neighbor nodes of t. The marginal
belief over each hidden node at iteration n is given by:

belns (xs) ∝ φs(xs, ys)
∏
t∈ρ(s)

mn
ts(xs) (3)

We approximate each message mn
ts(xs) as a mixture of

weighted Gaussian components given as:

mn
ts(xs) =

M∑
i=1

ws(i)N (xs;µs(i),Λs(i)) (4)

where M is the number of Gaussian components, ws(i) is the
weight associated with the ith component, µs(i) and Λs(i)
are the mean and covariance of the ith component respec-
tively. Fixing Λs(i) to a constant Λ simplifies the approxi-
mation without affecting the performance of the system [16].



NBP provides a Gibbs sampling based method to compute an
approximate of the value

∏
u∈ρ(t)\sm

n−1
ut (xt) that results in

the same form as Eq 4. Assuming that φt(xt, yt) is pointwise
computable, the product φt(xt, yt)

∏
u∈ρ(t)\sm

n−1
ut (xt) is

computed as part of the sampling procedure. The pairwise
term ψst(xs, xt) should be approximated as marginal in-
fluence function ζ(xt) to make the right side of Eq 2
independent of xs. The marginal influence function is given
by:

ζ(xt) =

∫
xs∈Rd

ψst(xs, xt)dxs (5)

If the marginal influence function is also
pointwise computable then the entire product
ζ(xt)φt(xt, yt)

∏
u∈ρ(t)\sm

n−1
ut (xt) can be computed

as part of the sampling procedure proposed in NBP. Refer
to the papers describing NBP [16] and PAMPAS [8] for
further details on how changes to the nature of the potentials
affect the message update computation (as in Eq 2). The
marginal influence function provides the influence of xs for
sampling xt. However, the function can be ignored if the
pairwise potential function is based on the distance between
the variables, which is true in our case.

C. Potential functions

1) Unary potential: Unary potential φt(xt, yt) is used to
model the likelihood by measuring how a pose xt explains
the observation yt. The observation yt ∈ (lt, Bt, Ct) provides
the 2D bounding boxes Bt corresponding to the xt. Let bt
be a bounding box sampled from the Bt using the Ct as
corresponding weights. Let pt be a subset of original point
cloud corresponding to a bounding box bt. The hypothesized
object pose xt is used to position the given geometric object
model for object lt and generate a synthetic point cloud p∗t
that can be matched with the observation pt. The synthetic
point cloud is constructed using the object geometric model
available a priori. The likelihood is calculated as

φt(xt, yt) = eλrD(pt,p
∗
t ) (6)

where λr is the scaling factor, D(pt, p
∗
t ) is the sum of

3D Euclidean distance between each point in pt and p∗t
associated by their pixel location in the observed bounding
box bt on I .

2) Pairwise potential: Pairwise potential gives informa-
tion about how compatible two object poses are given the
support relation in the form of edges. We consider three
different support cases: 1) object s is not directly in physical
contact with object t, 2) object s is supporting object t and
3) object t is supporting object s. This support structure is
provided as input to the system as shown in Fig 2. A binary
value {0, 1} is assigned based on the compatibility of object
poses and their support relations. Object geometries are avail-
able to the system for modeling this potential. We consider
the number of the dimensions of a pose to be 3 so that
xs = {xxs , xys , xzs} and xt = {xxt , x

y
t , x

z
t }. The dimensions

of the object models are denoted as ds = {dxs , dys , dzs} and
dt = {dxt , d

y
t , d

z
t } for the objects associated with the nodes s

and t respectively. The potentials between the nodes s and t

in the graph G can be computed using simple rules as shown
in the case below.

Case 1: Object s is not in physical contact with t

ψts(xs, xt) =


1, if ∆x >

(dxs+d
x
t )

2

or ∆y >
(dys+d

y
t )

2

or ∆z >
(dzs+d

z
t )

2

0, otherwise

(7)

where ∆x = |xxs − xxt | and dxs denotes the size of the
geometry associated with the node s in x direction. The size
of the geometry is used to avoid collisions and hence an
approximation such as dxs = dys = max(dxs , d

y
s) can be used.

Case 2: Object s supports object t

ψts(xs, xt) =


1, if ∆x < 1

2 (dxs )

and ∆y < 1
2 (dys)

and |∆z − 1
2 (dzs + dzt )| < ∆d

0, otherwise

(8)

where ∆d denotes such a threshold in the z direction that
the objects are touching each other.

Case 3: An object associated with t is supporting an object
associated with s

ψts(xs, xt) =


1, if ∆x < 1

2 (dxt )

and ∆y < 1
2 (dyt )

and |∆z − 1
2 (dzs + dzt )| < ∆d

0, otherwise

(9)

However, in the sampling based algorithm it is computa-
tionally optimal to sample for cases 2 and 3. In case 2, given
xt, the xxs and xys components of xs can be sampled using
N (xxt ,

1
2 (dxt )) and N (xyt ,

1
2 (dyt )) respectively. The xzs is

computed as xzt+
dzs+d

z
t

2 +N (0, σ) with a small noise. Similar
to case 2, in case 3, the xxs and xys components of xs can be
sampled using N (xxt ,

1
2 (dxt + dxs )) and N (xyt ,

1
2 (dyt + dys)).

The xzs is computed as xzt −
dzs+d

z
t

2 +N (0, σ) with a small
noise.

The Algorithm 1 denotes the high level overview of a
non-parametric belief propagation, Algorithm 2 gives the
details of how the Message update is performed using Gibbs
sampling approach. Algorithm 3 gives the details of how the
belief is computed which results in the maximum likelihood
estimate.



Algorithm 1: Overall Belief Propagation

Given node potentials φ(xs, ys) ∀s ∈ V , pairwise potentials
ψ(xs, xt) ∀(s, t) ∈ E and initial messages for every edge
m0
st ∀(s, t) ∈ E, the algorithm iteratively updates all mes-

sages and computes the belief till the graph G till converges.
1 For n ∈ [1 :MAX BELIEF ITERATIONS]

(a) Message update:
Update messages from iteration (n − 1) → n
using Eq 2 to 5
mn
ts(xs)←∫
xt∈Rd

(
ζ(xt)φt(xt, yt)

∏
u∈ρ(t)\sm

n−1
ut (xt)

)
dxt

(b) Belief update:
(Optional) Update belief at every iteration if
necessary. However, it doesn’t affect the message
update at 1(a) in next iteration.
belns (xs) ∝ φs(xs)

∏
t∈ρ(s)m

n
ts(xs)

Algorithm 2: Message update

Given input messages mn−1
ut (xt) = {µ(i)

ut ,Λ
(i)
ut , w

(i)
ut }Mi=1

for each u ∈ ρ(t) \ s, and methods to compute functions
ψts(xt, xs) and φt(xt, yt) pointwise, the algorithm computes
mn
ts(xs) = {µ(i)

ts ,Λ
(i)
ts , w

(i)
ts }Mi=1

1. Draw M independent samples {x̂(i)t }Mi=1 from the prod-
uct ζ(xt)φt(xt, yt)

∏
u∈ρ(t)\sm

n
ut(xt) using Gibbs

sampler in NBP.
(a) In our specific case ζ(xt) is 1.0.

2 For each {x̂(i)t }Mi=1, sample x̂(i)s ∼ ψst(xs, xt = x̂
(i)
t )

(a) Using Eq:(7, 8, 9), rejection sampling is per-
formed to sample x̂(i)s .

3 mn
ts(xs) = {µ(i)

ts ,Λ
(i)
ts , w

(i)
ts }Mi=1 is constructed

(a) µ
(i)
ts is the sampled component x̂(i)s

(b) kernel density estimators can be used to select
the appropriate kernel size Λ

(i)
ts . We use ”rule of

thumb” estimator [9].
(c) w

(i)
ts is initialized to 1/M ; however, if the pair-

wise potential is a density function then impor-
tance weights in the selection of µ(i)

ts can be used.

IV. EXPERIMENTS

In this section we firstly discuss the results of the proposed
belief propagation system qualitatively. Secondly, we intro-
duce the measure of clutterness of scene in terms of visibility
of objects. Lastly, we discuss a goal-directed manipulation
experiment performed with the proposed belief propagation
framework.

A. Belief Propagation Experiments

We initially tested the proposed framework on 6 scenes
with 6 objects in different configurations for each scene.
The scenes included objects in stacked, partially occluded,
and completely occluded configurations. In Fig 3, we show
the qualitative results of the pose estimations for a mildly
cluttered scene. The belief samples after 15 iterations shown
in Fig 3d cannot be directly used for manipulation as they
represent the samples drawn from a distribution of poses.
However, when these samples go through a post processing

Algorithm 3: Belief update

Given incoming messages mn
ts(xt) = {µ(i)

ts ,Λ
(i)
ts , w

(i)
ts }Mi=1

for each t ∈ ρ(s), and methods to compute functions
φs(xs, ys) pointwise, the algorithm computes belns (xs) ∝
φs(xs, ys)

∏
t∈ρ(s)m

n
ts(xs)

1 Draw T independent samples {x̂(i)s }Mi=1 from the prod-
uct φs(xs, ys)

∏
t∈ρ(s)m

n
ts(xs) using Gibbs sampler in

NBP.
(a) If φs(xs, ys) is modeled as a mixture of Gaus-

sians, then it can be part of the product.
(b) If φs(xs, ys) can be computed pointwise, then

the variant proposed in NBP [16] can be used to
compute the product using Gibbs sampling.

2 belns (xs) ∼ {µ(i)
s ,Λ

(i)
s , w

(i)
s }Ti=1 is used to compute

the scene estimate.
3 (Optional) To perform robot grasping and manipulation,

a single estimate is required. We draw K samples
from the belief product in step (2) to initialize the ICP
algorithm. From the ICP fits, get the weighted mean and
covariance. These are the estimates for manipulation
experiments.

step with ICP they transform into reliable a single pose esti-
mates for each object that fits to the point cloud. ICP fits for
each belief sample are used to compute the weighted mean,
which acts as the single final estimate for manipulation. For
every sample output from the ICP fit, distance is computed
to all the other samples in output of ICP. The distances are
normalized to sum to one. Weights used in the weighted
mean is the 1−distance computed and assigned to the
sample. The weighted variance measures the uncertainty in
perception for manipulation. If this variance is higher than a
threshold (0.25cm2) on all dimensions, then no manipulation
action is performed with this final pose estimate. For this
mildly cluttered scenes with 6 objects, the average error in
the pose of the final scene estimate is 0.91cm.

B. Analysis of Clutterness

We analyze the visibility of the objects in the scene
and measure its clutterness. This analysis is done using the
ground truth poses of the objects. If a scene consists of N
objects, the entire scene is rendered to a depth map S using
OpenGL rendering. Each of the N objects are rendered at
their ground truth poses in isolation to generate N depth
maps O1:N . Rendered image has non-zero depth value at
pixels where objects are present. Let Ji be the set of all the
pixels in the rendered depth map with non-zero depth value
for object Oi. Then the visibility V oi of object Oi and scene
V s is given by the below equation.

V oi =
voi
Ko
i

V s =

∑N
i=1 v

o
i∑N

i=1K
o
i

(10)

where voi is the total number of pixels with same depth values
in the isolated depth map of object Oi and full scene S; Ko

i

is the total number of pixels in Ji. See Fig. 5 to get a sense
of the scene visibility and object visibility.



(a) RGBD Obser-
vation with detec-
tions

(b) Scene graph prior (c) Initial belief samples (d) Final belief samples (e) Final estimate (f) Ground truth

Fig. 3: Qualitative results showing the estimation of the proposed framework: This experiment uses 15 Gaussian components for each message and is
run for 15 iterations to get the final belief samples. Final estimation is achieved through post processing the final belief samples with ICP registration,
followed by the weighted average on the converged poses.

(a) Observation Initialized belief Belief after 5 iter-
ations

Ground truth from
different view

Fig. 4: The first row shows a complete occlusion case: pink object (color of
bounding box in first column or object colors in 2-4 columns) is behind the
blue object and supporting the orange object. The bounding box for the pink
object drives the initial sampling. In the later iterations, samples are drawn
using support relations. The second row demonstrates a partial occlusion
case: The blue object (downy detergent) is behind the orange object in
the front. The bounding box initializes the belief propagation confusingly.
However, the pairwise potential resolves these cases by sampling away from
the objects without support relations.

C. Goal-directed Manipulation Experiment

To evaluate the proposed framework’s success in robotic
manipulation tasks we use the weighted mean pose and the
weighted variance that results from the post processing step
to perform a scene reorganization task. The reorganization
task is provided a goal scene with desired place locations
for the objects. Specifically, the robot’s task is to unload
a tray full of objects on to the table at the desired place
locations. To accomplish this task, a sequence of pick-and-
place actions are executed by the robot using the estimated
poses of each object. After all estimated object poses with
high confidence (with a threshold variance of 0.25cm2) have
been acted on, we reapply the scene estimation to produce
updated pose estimates. We iterate until the entire task is
accomplished.

In Fig 6, we report the results of an object manipulation
experiment on a heavily cluttered scene. This scene contains
10 objects stacked on a tray with a mixture of visible and
non-visible objects with partial and complete occlusions.
This experiment ended up with 4 sequence of perception
and manipulations stages. Sequence 1: begins with robot

perceiving the scene, which provides accurate pose estimates
for the coffee (yellow) and ginger tea (cyan) along with high
confidence in terms of variance less than 0.25cm2. These
two estimates are used by the robot manipulate these objects
from the tray onto the table. It should be noted from the
Fig. 5(a) that these two objects were 100% visible. However
the perception system was not confident about the coffee
mate which had 86% visibility. The perception system didn’t
consider any other leaf node for the manipulation action as
their belief samples didn’t converge due to low visibility and
had high uncertainty. Sequence 2: robot perceives the scene
again, which provided accurate poses with high confidence
for not only the leaf nodes -lemon tea (red) and granula
bar (pink)) but also the parent node for the lemon tea
which is oats container (purple). It should be noted from
Fig. 5(b) that only the fully visible (100%) leaf nodes are
manipulated along with 62% visible non-leaf node. This is
because the planner’s sequence of actions contains the entire
manipulation of the scene graph at any point of the time.
Sequence 3: the robot perceives the scene again. At this
stage all the objects on the tray are the leaf nodes except
for the protein box which is visible to the sensor for the first
time with visibility of 5%. Only three objects gets accurate
pose estimates along with high confidence for manipulation.
Sequence 4: we perceive the scene that contains only two
objects whose visibility is 100%. The poses are estimated
with high confidence for manipulation.

In addition to the manipulation results, we would like
to emphasize the advantage of using scene graph in the
inference. The first row of Fig 4 shows a case, where
the location of a completely occluded object supporting a
visible object is correctly estimated. Similarly second row
of Fig 4 demonstrates how the scene graph enables a correct
estimation for the location of an object partially occluded by
another one.

V. CONCLUSION

We analyze the approach towards goal-directed manipu-
lation especially in cluttered scenes. We observe that the
visibility can affect perception system. To overcome the
planner using the pose estimates directly from the perception
system, a confidence measure is calculated. We proposed a
nonparametric scene graph belief propagation to estimate a
scene as a collection of object poses and their interactions.



Fig. 5: Visibility of the nodes in the scene graph as viewed by the robot. Arrows towards left side of the scene corresponds to non-leaf nodes and right
side corresponds to the leaf nodes. These scenes are same as in Fig. 6 with same color coding as in scene graphs. The visibility is computed using the
measure described in Eq. 10. The red color % correspond to values less than 30%. The scene complexity is provided in the caption of every scene.

This problem is formulated as a graph inference problem
on a Markov Random Field. We show the benefit of the
belief propagation approach in manipulation by presenting
the qualitative results of pose estimations used for robot
manipulation. We also show how to measure the clutterness
of the scene in terms of object visibilities. In the future work
we would like to infer the graph structure or the scene graph
which is currently provided as the input to the system.
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Fig. 6: Goal-directed manipulation experiment: The robot is given a task of reconfiguring the scene and achieve a predefined goal configuration. In
this experiment, the robot takes 4 sequences to finish the task. Each sequence starts with the proposed system perceiving the scene and providing object
pose estimates and measure of uncertainty. The robot performs the pick-and-place actions on the objects whose estimates have high confidence from the
perception system. In the last run the robot fails to pickup an object as it was not reachable, though the estimate was precise with respect to the ground
truth.


