# **SORNet: Spatial Object-Centric Representations for Sequential** Manipulation

Wentao Yuan<sup>1</sup> Chris Paxton<sup>2</sup> Karthik Desingh<sup>1</sup> Dieter Fox<sup>1,2</sup>

# <sup>1</sup>University of Washington <sup>2</sup>NVIDIA

# Contribution

We propose **SORNet**: Spatial Object-centric Representation **Network to learn object-centric embeddings that encode** spatial relations and enable **zero-shot** classification and regression of spatial relations among unseen objects.

## **Embedding network**

Permutation-invariant object embedding from the network



# **Readout networks**

Number of outputs changes adaptively with number of





# Can we learn implicit objectcentric representations for spatial-reasoning and manipulation?









### End-effector to Object direction



Side view



on direction regression Key Takeaway:

- where spatial reasoning is critical.

# Spatial predicate classification

### Simulation results

### Real-world results



black] True positive, [blue] False positive, [red] False negative

# **Spatial direction regression**

# Object to Object direction

Front view



aht of(vellow mug, blue pla

nt of(vellow mug, green bo contact(blue plate, green boy (imity(blue plate, green bo





Front view

> SORNet's embedding contains much more spatial information compared to non-objectcentric baselines, as shown by its advantage in all 3 test scenarios.

> This indicates that SORNet's embedding can be much more useful in manipulation,