Scene Understanding using Part-Based Object Affordances

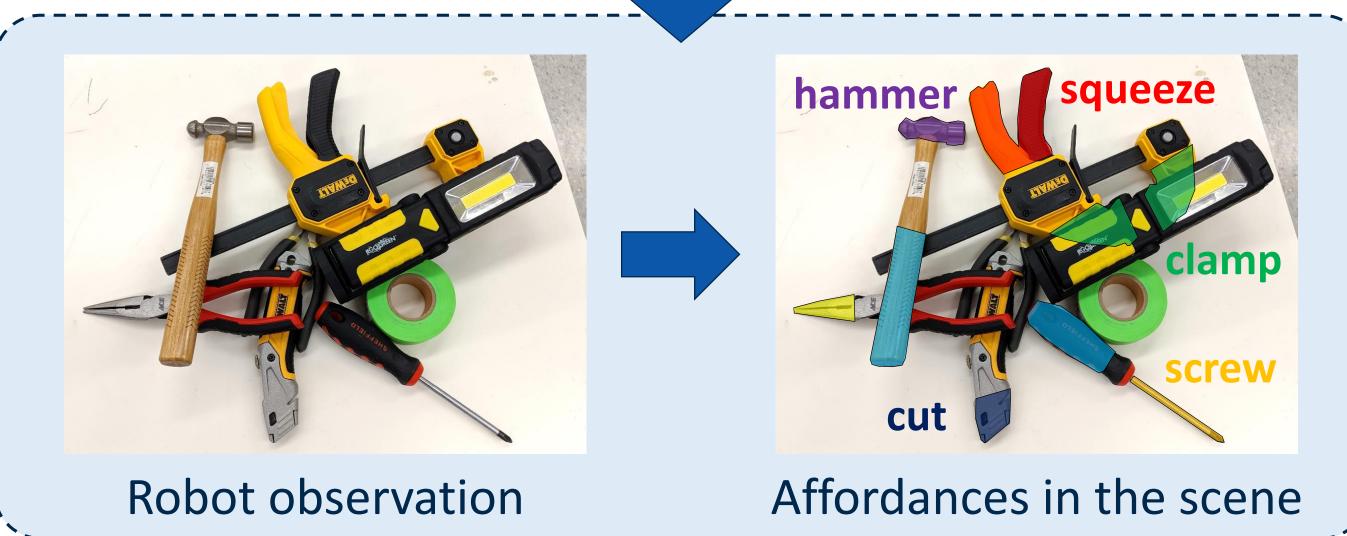
Jana Pavlasek, Karthik Desingh, Odest Chadwicke Jenkins

Laboratory for Progress

Robotics Institute, University of Michigan, Ann Arbor, USA

Perceiving a scene as a collection of actions available to the robot is more effective for task execution.

Introduction

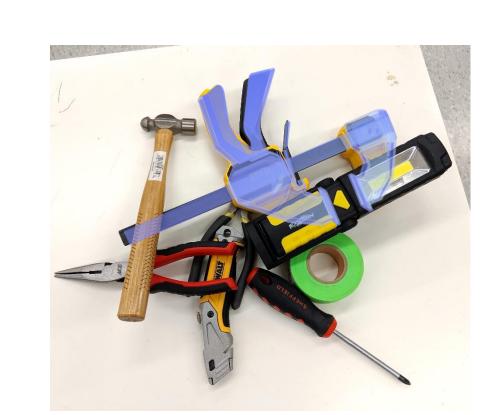


The ability to use tools is critical to enable robots to perform assembly, repairs and maintenance of equipment in remote locations. To effectively use tools, a robot needs to identify and localize articulated objects in unstructured, cluttered environments. Rather than representing the scene in terms of object classes, it can be represented as a collection of object affordances [1], or actions available to the robot. Since affordances tend to be associated with object parts, localizing objects by parts is useful. A parts-based method is robust to occlusions because the relationships between parts can be used to infer the location of occluded parts. We propose a parts-based pose estimation method which combines domain knowledge about the object model with a deep learned detector using generative inference.

Object Localization in Clutter

Detection is robust when objects are isolated.

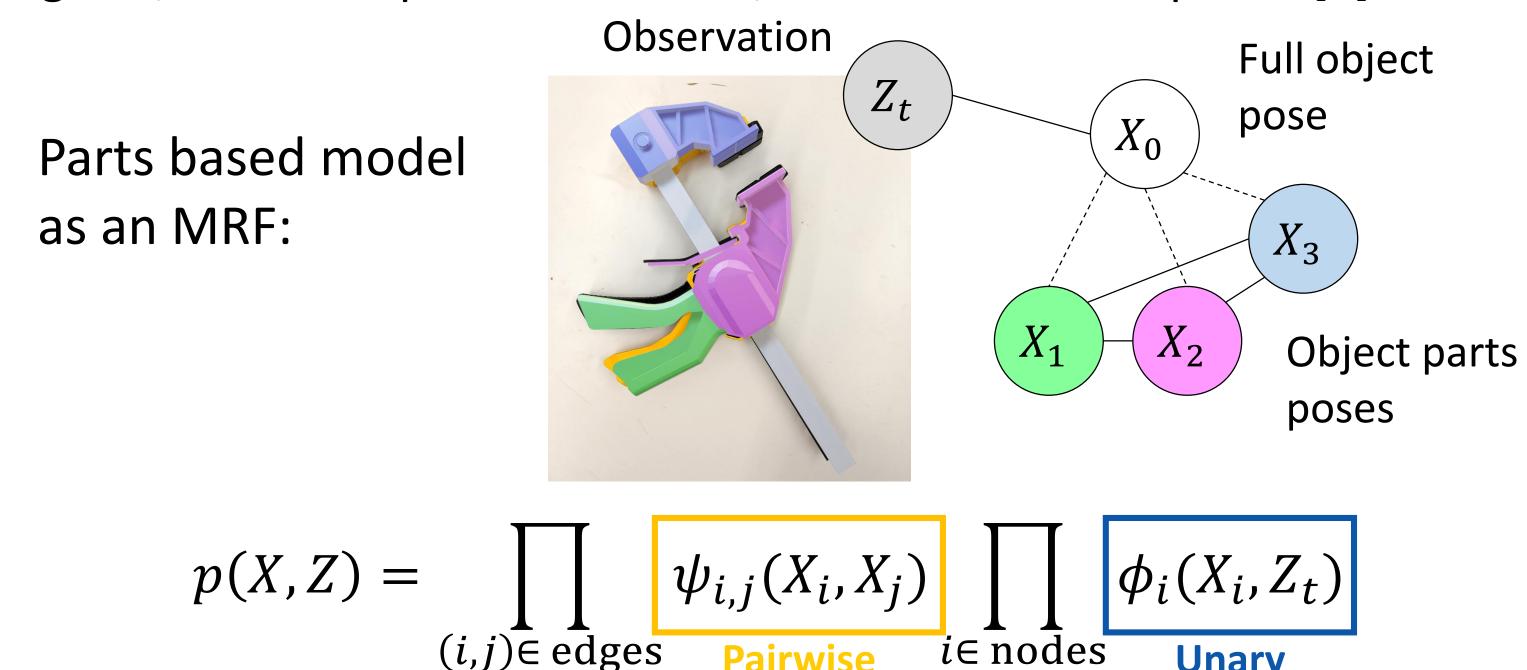
Under occlusion, detections might fail, but some parts can be detected.



Parts-based generative inference can correct failures.

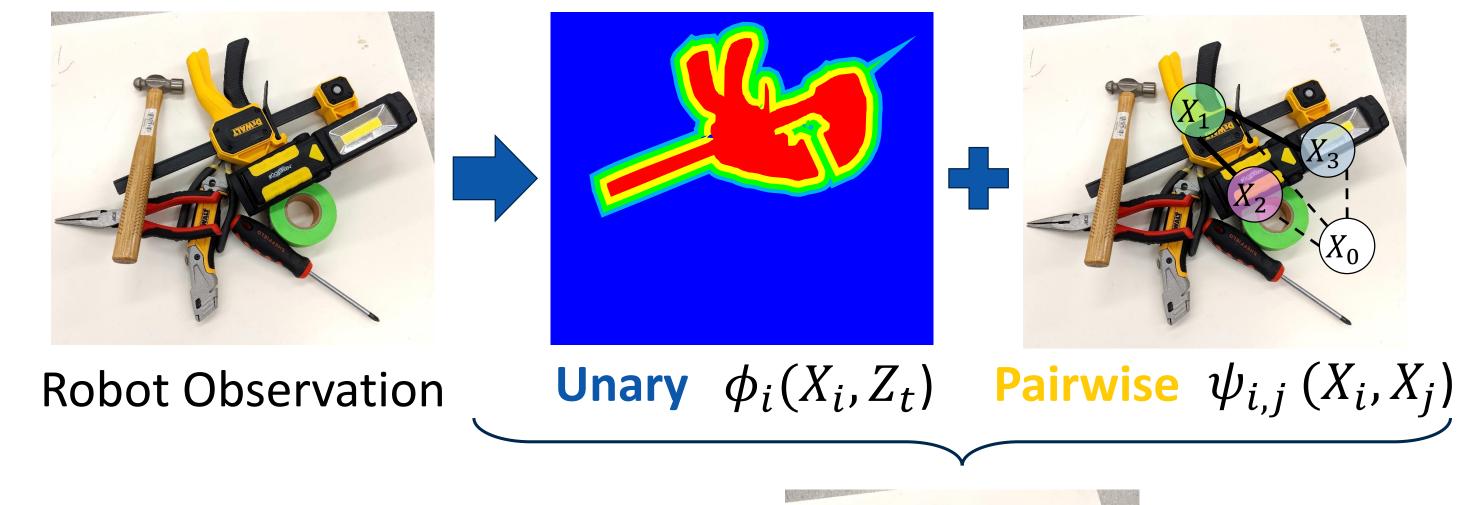
Parts-Based Object Localization

Objects are modelled as a Markov Random Field (MRF) where each node is the pose of an object part. We maintain a belief over object pose as a set of particles and perform inference using belief propagation [2]. We assume mesh models and part models are given, as well as part affordances, as affordance templates [3].



Unary potential: Learned model. Describes correspondence of the observation to a given hypothesis

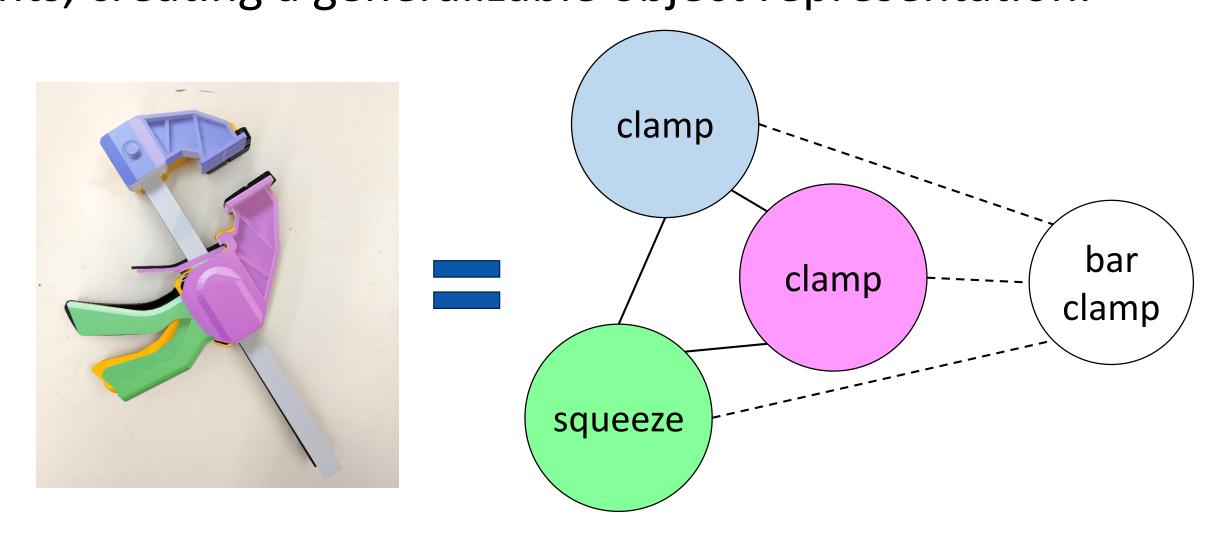
Pairwise potential: Describes agreement of the hypothesis to the geometric parts-based model.



Localized object pose in 3D

Future Work

To loosen our reliance on mesh models, we can directly detect the affordances in the scene, as in [4,5]. The objects can be represented in terms of their affordances and geometric constraints, creating a generalizable object representation.



References

- [2] K. Desingh, S. Lu, A. Opipari, and O. C. Jenkins, "Efficient nonparametric belief propagation for pose estimation and manipulation of articulated objects," Science Robotics, vol. 4, no. 30, 2019.
- [3] S. Hart, P. Dinh, and K. Hambuchen. "The affordance template ROS package for robot task programming," in 2015 IEEE International Conference on Robotics and Automation, pages 6227–6234. IEEE, May 2015 [4] M. Kokic, J. A. Stork, J. A. Haustein, and D. Kragic, "Affordance detection for task-specific grasping using deep learning," in 2017 IEEE-RAS 17th International Conference on Humanoid Robotics.
- [5] T.-T. Do, A. Nguyen, and I. Reid, "AffordanceNet: An end-to-end deep learning approach for object affordance detection," in 2018 IEEE International Conference on Robotics and Automation.